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Financial modeling in general

Financial modeling may seem like a very broad term, and it is.

There’s no one general definition for it - everybody understands it a bit differently and 
as having different scope.



Common definitions of financial modeling

Moneyterms defines financial model as “anything that is used to
calculate, forecast or estimate financial numbers”

Investopedia says it’s “the process of creating a summary of a
company's expenses and earnings in the form of a spreadsheet
that can be used to calculate the impact of a future event or
decision”

Wikipedia says it’s “the task of building an abstract representation
(a model) of a real world financial situation”



Where is financial modeling utilized?

· In financial entities, like:
· banks
· insurance companies
· investment funds
· rating agencies

· In the Government

· In non-financial entities, like 
corporations and regular companies



What is financial modeling utilized for?

· Banks – all kinds of risks assessments, like credit risk, liquidity risk, operational 
risk, market risk etc., credit scoring, calculation of reserves and norms, 
valuation of assets and liabilities

· Insurers – calculation of insurance premiums, financial reserves, valuation of 
subjects of insurance, etc.

· Investment funds – valuation of all types of financial instruments, assets, risk 
management, etc.

· Rating agencies – basically living off models, assigning trustworthiness ratings to 
entities, financial instruments, countries, etc.

· Regular companies – budget management and forecasting, valuation, capital 
allocation, etc.



Financial instruments

Derivative is an instrument, whose value 
depends on the underlying instrument:
· option
· future/forward contract
· swap

Underlying instrument is a variable, e.g.:
· stock price
· stock index value
· bond yield
· interest rate

For the purposes of valuation of derivative instruments, the behavior of the underlying 
instruments is modeled



Options

· The options give the right to buy / sell the underlying 
instrument at a fixed price on a fixed date

· Options types (european / american / exotic)

· Why is option valuation important?
· options are widely used in hedging a portfolio position

· options are also used for speculation 

𝐶! = max 𝑆! − 𝐾; 0

𝑃! = max 𝐾 − 𝑆!; 0



Black-Scholes model
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Black-Scholes formula (for call option price)

where:
𝑆" - (known) current share price
𝐾 - (known) option strike price
𝑇 - (known) option expiry time
𝑟 - (known) risk-free rate
𝜎 - (unknown) standard deviation of the logarithmic returns (volatility) 



Black-Scholes model extensions

The Black-Scholes model has some assumptions that are not necessarily met (such as
the fact that the volatility of 𝜎 is constant over time) therefore there are many
extensions to it. One of them is the Heston model.

New parameters appear in the model.
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The Bates model extends the Heston model with random jumps in the prices of the
underlying instrument. Next parameters appear in the model.

Black-Scholes model extensions
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Why is model calibration important?

· In financial institutions, models are one of the key elements in investment
decision-making

· Models are recalibrated multiple times during the day

· Calibration is resource intensive (due to the time needed to evaluate models and the 
use of mainly non-gradient methods)



Calibration problem

We define quotation (stock price or implied volatility) resulting from the model:
𝑄 𝜏; 𝜃

where 𝜏 denotes the features of the given instrument, and 𝜃 ∈ ℝ* denotes the model 
parameters (𝑛 is the number of these parameters).

And market quotation:
𝑄+,! 𝜏

We want to determine the parameters 𝜃 minimizing the cost function:

arg min
-∈ℝ"
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Stock price and implied volatility

Knowing the call option price (market or model based) 𝑉, implied volatility 𝜎∗ can be 
calculated by solving following equation:

𝐵𝑆 𝜎∗; 𝑆, 𝐾, 𝜏, 𝑟 = 𝑉

In explicit form:
𝜎∗(𝑚, 𝜏) = 𝐵𝑆62 𝑉;𝑚, 𝜏, 𝑟

where 𝑚 = 7
8

and 𝜏 = 𝑇 − 𝑡

There is no analytical solution to the above equation. Numerical methods are used to 
solve it.



Stock price and implied volatility

Instead of using numerical methods, a neural network can be used, mapping the 
parameters {𝑉,𝑚, 𝜏, 𝑟} to volatility 𝜎∗.
Benefits of such approach:

· network can be trained on synthethic data

· network is faster than numerical methods

A problem appears (which seems to be already solved) – when 𝑆 jest strongly different 
than 𝐾 (i.e., when 𝑚 < 0.5 or 𝑚 > 2) model ceases to be sensitive to 𝜎∗ changes, 
large gradients appear in the inverse function, which negatively affects the network 
performance.



Stock price and implied volatility
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4.3. Implied Volatility

The aim here is to learn the implicit relationship between implied volatilities and option prices,
which is guided by Equation (5). The option Vega can become arbitrarily small, which also may give
rise to a steep gradient problem in the ANN context. It is well-known that an ANN may generate
significant prediction errors in regions with large gradients. We therefore propose a gradient-squash
approach to handle this issue.

First of all, each option price can be split into a so-called intrinsic value and a time value, and we
subtract the intrinsic value, as follows,

Ṽ = Vt � max(St � Ke�rt , 0),

where Ṽ is the option time value. Please note that this change only applies to ITM options, since the
OTM intrinsic option value is equal to zero. The proposed approach to overcome approximation issues
is to reduce the gradient’s steepness by furthermore working under a log-transformation of the option
value. The resulting input is then given by {log (Ṽ/K), S0/K, r, t}. The adapted gradient approach
increases the prediction accuracy significantly.

4.3.1. Model Performance

In this case, the data samples can be created in a forward stage, i.e., we will work with
the Black-Scholes solution (instead of the root-finding method) to generate the training data set.
Given s, t, K, r and S, the generator, i.e., the Black-Scholes formula, gives us the option price
V(t0, S0) = BS(S0, K, t, r, s). For the data collection {V, S0, K, t, r, s}, we then take the input s as
the implied volatility s⇤ ⌘ s and place it as the output of the ANN. Meanwhile, the other variables
{V, S0, K, t, r} will become the input of the ANN, followed by the log-transformation log(Ṽ/K).
In addition, we do not take into consideration the samples whose time values are extremely small, like
those for which Ṽ < 10�7.

Table 6. Parameter range of data set.

IV-ANN Parameters Range Unit

Input

Stock price (S0/K) [0.5, 1.4] -
Time to maturity (t) [0.05, 1.0] year

Risk-free rate (r) [0.0, 0.1] -
Scaled time value (log (Ṽ/K)) [�16.12, �0.94] -

Output Volatility (s) (0.05, 1.0) -

Two implied volatility ANN (IV-ANN) solvers are trained based on the dataset in Table 6. After
that, Table 7 compares the performance of the trained ANNs with the scaled and original (unscaled)
input, where it is clear that scaling improves the ANN performance significantly. Figure 8 shows
the out-of-sample performance of the trained ANN on the scaled inputs. The error distribution also
approximately follows a normal distribution, where the maximum deviation is around 6 ⇥ 10�4,
and most of implied volatilities equal their true values.

Table 7. Out-of-Sample ANN performance comparison.

IV-ANN MSE MAE MAPE R2

Input: m, t, r, V/K
Output: s⇤ 6.36 ⇥10�4 1.24 ⇥10�2 7.67 ⇥10�2 0.97510

Input: m, t, r, log(Ṽ/K)
Output: s⇤ 1.55 ⇥10�8 9.73 ⇥10�5 2.11 ⇥10�3 0.9999998
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Figure 8. Out-of-Sample IV-ANN performance on the scaled input. (a) Comparison of implied
volatilities; (b) The error distribution.

4.3.2. Comparison of Root-Finding Methods

We compare the performance of five different implied-volatility-finding methods, including
IV-ANN, Newton-Raphson, Brent, the secant and the bisection method, in terms of run-time on a CPU
and on a GPU. For this purpose, we compute 20,000 European call options for which all numerical
methods can find the implied volatility. The s-value range for bisection and for Brent’s method is set
to [0, 1.1], and the initial guess for the Newton-Raphson and secant method is chosen s⇤

0 = 0.5. The
true volatility varies in the range [0.01, 0.99], with the parameters, r = 0, T = 0.5, K = 1.0, S0 = 1.0.

Table 8 shows that Brent’s method is the fastest among the robust iterative methods (without
requiring domain knowledge to select a suitable initial value). From a statistical point-of-view, the
ANN solver gives rise to an acceptable averaged error MAE ⇡ 10�4, and, importantly, its computation
is faster by a factor 100 on a GPU and 10 on a CPU, as compared to the Newton-Raphson iteration.
By the GPU architecture, the ANN processes the input ’in batch mode’, calculating several implied
volatilities simultaneously, which is the reason for the much higher speed. Besides, the acceleration on
the CPU is also obvious, as only matrix multiplications or inner products are required.

Table 8. Performance comparison: CPU (Intel i5, 3.33GHz with cache size 4MB) and GPU(NVIDIA
Tesla P100).

Method GPU (seconds) CPU (seconds) Robustness

Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes
Secant 88.73 103.76 No

Bi-section 337.94 390.91 Yes

IV-ANN 0.20 1.90 Yes

4.4. The Heston Stochastic Volatility Model

This section presents the quality of the ANN predictions of the Heston option prices and the
corresponding implied volatilities. The performance of the Heston-ANN solver is also evaluated.

4.4.1. Heston Model for Option Prices

The Heston option prices are computed by means of the COS method in this section. The solution
to the Heston model also can be obtained by other numerical techniques, like PDEs discretization
or Monte Carlo methods. The COS method has been proved to guarantee a high accuracy with less
computational expense.

Source: Liu, 2019

(for 20.000 european options)



Supporting model calibration with neural networks 

Let’s take the Heston model into consideration. Classic valuation using this model looks 
as follows:

The calibration of this model is performed with the use of non-gradient heuristics such 
as Differential Evolution or Particle Swarm Optimization. 

Two bottlenecks arise here - the time needed to evaluate the model in the calibration 
process and the pace of the calibration itself. 

Figure 1: The Heston-implied volatility ANN.

The forward pass consists of training and prediction, and in order to do so the
network architecture and optimization method have to be defined. Generally,
an increasing number of neurons, or a deeper structure, may lead to better
approximations, but may also result in a computationally heavy optimization
and evaluation of the network. In (Liang and Srikant, 2016) it is proved that
a deep NN can approximate a function for which a shallow NN may need a
very large number of neurons to reach the same accuracy. Di↵erent residual
neural networks have been trained and tested as a validation of our work. They
may improve the predictive power while using a similar number of weights as
in an MLP, but they typically take significantly more computing time during
the training and testing phases. Very deep network structures may reduce the
parallel e�ciency, because the operations within a layer have to wait for the
output of previous layers. With the limitation of computing resources available,
a trade-o↵ between ANN’s computation speed and approximation capacity may
be considered.

Many techniques have been put forward to train ANNs, especially for deep
networks. Most of the neural network training relies on gradient-based methods.
A proper random initialization may ensure the network to start with suitable
initial weight values. Batch normalization scales the output of a layer by sub-
tracting the batch mean and dividing it by the batch standard deviation. This
can often speed up the training process. A dropout operation randomly selects
a proportion of the neurons and deactivates them, which forces the network to
learn more generalized features and prevents over-fitting. The dropout rate p
refers to the proportion of deactivated neurons in a layer. In the testing phase,
in order to take into account the missing activation during training, each activa-
tion in the entire network is reduced by a factor p. As a consequence, the ANNs
prediction slows down, which has been verified during experiments on GPUs.
We found that our ANNs model did not encounter over-fitting even when using
a zero dropout rate, as long as su�cient training data were provided. In our
neural network we employ the Stochastic Gradient Descent method, as further
described in Section 3.4.
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Supporting model calibration with neural networks 
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According to the given ranges of Heston parameters in Table 9, for the COS method, the integration
interval is based on LCOS = 50, with the number of Fourier cosine terms in the expansion being
NCOS = 1500. The prices of deep OTM European call options are calculated using the put-call parity, as
the COS method call prices that are close to zero may be inaccurate due to truncation errors. In Table 9,
we list the range of the six Heston input parameters (r, r, k, n̄, g, n0) as well as the two option
contract-related parameters (t, m), with a fixed strike price, K = 1. We generate around one million
data points by means of the Latin hypercube sampling, using 10% as testing, 10% as validation and 80%
as the training data set. After 3000 epochs with a decaying learning rate schedule, as shown in Table 10,
the Heston-ANN solver has been well trained, avoiding over-fitting and approximating the prices
accurately. Although the number of input parameters is doubled as compared to the Black-Scholes
model, the Heston-ANN accuracy is also highly satisfactory and the error pattern is similar to that of
the BS-ANN solver, see Figure 9.

Table 9. The Heston parameter ranges for traing the ANN.

ANN Parameters Range Method

Input

Moneyness, m = S0/K (0.6, 1.4) LHS
Time to maturity, t (0.1, 1.4)(year) LHS

Risk free rate, r (0.0%, 10%) LHS
Correlation, r (�0.95, 0.0) LHS

Reversion speed, k (0.0, 2.0) LHS
Long average variance, n̄ (0.0, 0.5) LHS
Volatility of volatility, g (0.0, 0.5) LHS

Initial variance, n0 (0.05, 0.5) LHS

Output European call price, V (0, 0.67) COS

Table 10. The trained Heston-ANN performance.

Heston-ANN MSE MAE MAPE R2

Training 1.34 ⇥ 10�8 8.92 ⇥ 10�5 5.66 ⇥ 10�4 0.9999994
Testing 1.65 ⇥ 10�8 9.51 ⇥ 10�5 6.27 ⇥ 10�4 0.9999993

(a) (b)

Figure 9. Out-of-sample Heston-ANN performance. (a) COS vs. Heston-ANN prices; (b) The error
distribution.

4.4.2. Heston Model and Implied Volatility

We design two experiments to illustrate the ANN’s ability of computing the implied volatility
based on the Heston option prices. In the first experiment, the ground truth for the implied volatility
is generated by means of two steps. Given the Heston input parameters, we first use the COS method
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4.4.2. Heston Model and Implied Volatility

We design two experiments to illustrate the ANN’s ability of computing the implied volatility
based on the Heston option prices. In the first experiment, the ground truth for the implied volatility
is generated by means of two steps. Given the Heston input parameters, we first use the COS method

Source: Liu, 2019



Supporting model calibration with neural networks 

After training the network, calibration of the model comes down to determining the 
following network input parameters 𝜃:

𝜃; 𝐾, 𝜏, 𝑆$, 𝑟 ↦ 𝑉(𝜃; 𝐾, 𝜏, 𝑆$, 𝑟)
To minimize the cost function:

arg min
-∈ℝ"

A
012

3

𝜔0 𝑉(𝜃; 𝐾, 𝜏, 𝑆$, 𝑟) − 𝑉+,!(𝐾, 𝜏, 𝑆$, 𝑟)
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Supporting model calibration with neural networks 

Problem: a trained network approximates the same function, so gradient methods still 
won't be able to optimize it – we have to use the same calibration methods as before.

This problem remains open.

We already know gradients in the network, so maybe they can support current 
methods?

In the literature, there are solutions that replace heuristics with neural networks, but 
these are rather theoretical considerations. 



Models assumptions

Models which are approximated using neural networks have certain assumptions that 
must be satisfied by that neural network (such as assumption that there is no arbitrage 
in the market), which can be written in the form of requirements imposed on 
derivatives:

𝜕𝑉
𝜕𝑇

> 0,
𝜕𝑉
𝜕𝐾

< 0,
𝜕4𝑉
𝜕𝐾4

> 0



Data sources

Macroeconomic data is available from government sites for particular 
economies.
OTC data:
· finance.yahoo.com – free, mostly US equites, bonds, FX, commodities
· stooq.pl – free, mainly polish quotes and bonds, but also main foreign, 

indexes, FX
· data.nasdaq.com (formerly quandl.com) – paid/free, various equities, FX, 

macro data, packaged into groups, most of packages are affordable
· historicaloptiondata.com – US equity options, paid, but affordable, data is 

available with high granularity



Why do we need synthetic financial data?

There are couple of reasons:

· privacy (of data subjects)

· data use restrictions

· small amount of historical data for particular events (crashes on the 
market, recessions, recoveries, etc.)

· too little data to train more advanced models



Generating synthetic financial data

Let’s split financial data into two categories:

· retail banking data (e.g. customer data, including age, profession, income, 
marital status, gender)

· market microstructure data (time series, e.g., stock price or implied 
volatility over time)



Generating synthetic financial data - methods

· Modeling real data with particular models (AR, GARCH, Black-Scholes, 
Heston for options, etc.)

· Neural networks – QuantGANs, CGANs

· “Inverting” decision tree classifiers, SVM

· Agent-based models (more advanced, mostly for real-time data 
simulation)



Thank you for your attention



Questions?
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