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Financial modeling in general

Financial modeling may seem like a very broad term, and it is.

There’'s no one general definition for it - everybody understands it a bit differently and
as having different scope.



Common definitions of financial modeling

Wikipedia says it's “the task of building an abstract representation
(a model) of a real world financial situation”

(i

nvestopedia says it's “the process of creating a summary of a\
company's expenses and earnings in the form of a spreadsheet
that can be used to calculate the impact of a future event or

\decision )

Moneyterms defines financial model as “anything that is used to
calculate, forecast or estimate financial numbers”




Where is financial modeling utilized?

In financial entities, like: K ) []
‘ . |21 |
’ bankS Central Banks
insurance companies Governments '\ 1‘

investment funds Financial Market

Participants

rating agencies

In the Government

In non-financial entities, like
corporations and regular companies

Institutional Traders

Brokers Retail Traders



What is financial modeling utilized for?

- Banks — all kinds of risks assessments, like credit risk, liquidity risk, operational
risk, market risk etc., credit scoring, calculation of reserves and norms,
valuation of assets and liabilities

- Insurers — calculation of insurance premiums, financial reserves, valuation of
subjects of insurance, etc.

- Investment funds — valuation of all types of financial instruments, assets, risk
mManagement, etc.

- Rating agencies — basically living off models, assigning trustworthiness ratings to
entities, financial instruments, countries, etc.

- Regular companies — budget management and forecasting, valuation, capital
allocation, etc.



Financial instruments

Underlying instrument is a variable, e.g: Derivative is an instrument, whose value
. stock price depends on the underlying instrument:

- stock index value - option

- bond yield - future/forward contract

- Interest rate © swap

For the purposes of valuation of derivative instruments, the behavior of the underlying
instruments is modeled



Options

- The options give the right to buy / sell the underlying
instrument at a fixed price on a fixed date

- Options types (european / american / exotic)

- Why is option valuation important?

- options are widely used in hedging a portfolio position

- options are also used for speculation
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Black-Scholes model

Wiener process
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Black-Scholes formula (for call option price)

option won't be exercised option will be exercised
Cy = S()N(dl) + KG_TTN(dQ)

So o?
d1: ngdl—Uﬁ

ov/'T

where:

So - (known) current share price

K - (known) option strike price

T - (known) option expiry time

r - (known) risk-free rate

o - (unknown) standard deviation of the logarithmic returns (volatility)



Black-Scholes model extensions

The Black-Scholes model has some assumptions that are not necessarily met (such as
the fact that the volatility of o is constant over time) therefore there are many

extensions to it. One of them is the Heston model.

dSt — T'Stdt + \/V_tStthS, StO — SO
dvt — K(ﬁ — Vt)dt + y\/V—tthv, vtO =V
thSth'V — pdt

New parameters appear in the model.



Black-Scholes model extensions

The Bates model extends the Heston model with random jumps in the prices of the
underlying instrument. Next parameters appear in the model.

dS; = rSedt + VS dWS + (e%19€ — 1)S,dq, St, = So
dvt — K(ﬁ — Vt)dt + y\/V—tthv, vtO =V
thSth'V — pdt



Why is model calibration important!?

- In financial institutions, models are one of the key elements in investment
decision-making

- Models are recalibrated multiple times during the day

- Calibration is resource intensive (due to the time needed to evaluate models and the
use of mainly non-gradient methods)



Calibration problem

VWe define quotation (stock price or implied volatility) resulting from the model.
Q(z; 6)

where T denotes the features of the given instrument, and 8 € R™ denotes the model
parameters (n is the number of these parameters).

And market quotation:
kat (T)

VWe want to determine the parameters 8 minimizing the cost function:

N
arg min z W; (Q(Ti; ) — kat(Ti))z
i=1

feR"



Stock price and implied volatility

Knowing the call option price (market or model based) V, implied volatility ™ can be
calculated by solving following equation:

BS(c*;S,K,t,r) =V

In explicit form:
o*(m,7) = BS~Y(V;m,1,7)

Wherem=%andT=T—t

There is no analytical solution to the above equation. Numerical methods are used to
solve it.



Stock price and implied volatility

Instead of using numerical methods, a neural network can be used, mapping the
parameters {V,m, T, r} to volatility ™.

Benefits of such approach:
- network can be trained on synthethic data

- network is faster than numerical methods

A problem appears (which seems to be already solved) — when S jest strongly different
than K (i.e, when m < 0.5 or m > 2) model ceases to be sensitive to g™ changes,

large gradients appear in the inverse function, which negatively affects the network
performance.



Stock price and implied volatility

IV-ANN Parameters Range Unit
Stock price (So/K) [0.5,1.4] -
Time to maturity () [0.05, 1.0] year
Input Risk-free rate (r) [0.0, 0.1] -
Scaled time value (log (V/K)) [—16.12, —0.94] -
Output Volatility (0) (0.05, 1.0) _ (for 20.000 european options)
Method GPU (seconds) CPU (seconds) Robustness
Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes
Secant 88.73 103.76 No
Bi-section 337.94 390.91 Yes
IV-ANN 0.20 1.90 Yes
IV-ANN MSE MAE MAPE R?
Input:m, T,7, V/K (a0 1074 124 x10-2  7.67 x10-2 097510
Output: o
Input: m, T, 7, 10g(V/K) 1 55 10-8 973 x10-5 211 x10~3  0.9999998

Output: o*

Source: Liu, 2019



Supporting model calibration with neural networks

Let's take the Heston model into consideration. Classic valuation using this model looks
as follows:

( Py K, V0, V, ¥ W_} Heston Wcos method  Option Brent | Implied
| KnSer model | price volatility

The calibration of this model is performed with the use of non-gradient heuristics such
as Differential Evolution or Particle Swarm Optimization.

Two bottlenecks arise here - the time needed to evaluate the model in the calibration
process and the pace of the calibration itself.



Supporting model calibration with neural networks

To eliminate the first bottleneck, neural network can be used again, mapping the model
parameters {p, k, vy, V,V¥; K, T, Sg, 7} to the price of an option V. The valuation
process will be as follows:

( pPsK, V0, V, Y W_’ Heston Heston-ANNf Optlon IV-ANN Imphed
L K,7,80,r J model t price volatility

where [V-ANN is the neural network described earlier.

The advantages of using such a network are similar to the previous case: the possibility
of training on synthetic data and speed up of the operation.



Supporting model calibration with neural networks

ANN Parameters Range Method
Moneyness, m = Sg/K (0.6,1.4) LHS
Time to maturity, T (0.1, 1.4)(year) LHS
Risk free rate, r (0.0%, 10%) LHS ] 2
Correlation, p (—0.95, 0.0) LHS Heston-ANN MSE MAE MAPE R
Input Reversionspeed, x  (0.0,2.0) LHS Training ~ 1.34x107% 892x107° 5.66x10"* 0.9999994
Long average variance, v (0.0,0.5) LHS Testing 1.65x 1078 951x107° 627 x107*  0.9999993
Volatility of volatility, y (0.0, 0.5) LHS
Initial variance, v (0.05, 0.5) LHS
Output  European call price, V (0, 0.67) COS
Heston-ANN & IV-ANN RMSE MAE MAPE R?
Case 1: —4 —4 g
r€[03,1.1],m € [07,13] 7.12 x10 4.19 x10 1.46 x10 0.999966
Case 2:

-4 —4 -3
T € [0.4,1.0], m € [0.75,1.25] 5.53 x10 3.89 x10 1.14 x10 0.999980

Source: Liu, 2019



Supporting model calibration with neural networks

After training the network, calibration of the model comes down to determining the

following network input parameters 0:
{6;K, 1,5y, 7} » V(6;K,T,5), 1)

To minimize the cost function:

N
arg HnelliRr}lz: w; (V(6; K,7,So, 1) — VMRE(K, T, SO,r))2
i=1



Supporting model calibration with neural networks

Problem: a trained network approximates the same function, so gradient methods still
won't be able to optimize it — we have to use the same calibration methods as before.

This problem remains open.

We already know gradients in the network, so maybe they can support current
methods?

In the literature, there are solutions that replace heuristics with neural networks, but
these are rather theoretical considerations.



Models assumptions

Models which are approximated using neural networks have certain assumptions that
must be satisfied by that neural network (such as assumption that there is no arbitrage
in the market), which can be written in the form of requirements imposed on
derivatives:

v, v _ 62V>0
orT~ 7 0K = 0K?



Data sources

Macroeconomic data is available from government sites for particular
economies.

OTC data:
- finance.yahoo.com — free, mostly US equites, bonds, FX, commodities

- stoog.pl — free, mainly polish quotes and bonds, but also main foreign,
indexes, FX

- data.nasdag.com (formerly quandl.com) — paid/free, various equities, FX,
macro data, packaged into groups, most of packages are affordable

- historicaloptiondata.com — US equity options, paid, but affordable, data is
available with high granularity



Why do we need synthetic financial data!?

There are couple of reasons:
- privacy (of data subjects)

- data use restrictions

- small amount of historical data for particular events (crashes on the

market, recessions, recoveries, etc.)

- too little data to train more advanced models



Generating synthetic financial data

Let’s split financial data into two categories:

- retail banking data (e.g. customer data, including age, profession, income,
marital status, gender)

- market microstructure data (time series, e.g., stock price or implied
volatility over time)



Generating synthetic financial data - methods

- Modeling real data with particular models (AR, GARCH, Black-Scholes,
Heston for options, etc.)

- Neural networks — QuantGANs, CGANs

- “Inverting” decision tree classifiers, SVM

- Agent-based models (more advanced, mostly for real-time data
simulation)



Thank you for your attention



Questions!
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