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Presentation plan

● Particle physics experiment workflow

● ML in particle track reconstruction

● ML in detector event simulation

● Hardware accelerated neural networks
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Particle physics experiment workflow

● We have a physics problem that needs to be studied

○ e.g. specific decay predicted by a new theory

● And the experiment (detector) that would be able to find effects of such prediction

● Using Monte Carlo methods it’s possible to simulate the experiment outcome 

assuming known and confirmed physics

● Than statistical analysis of simulated and experimental data can be conducted

● When they differ - it may be a hint for more experiments

Or, if the difference is significant, a new physics discovery
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Example: Higgs boson discovery in LHC (2012)

● Theory (Standard Model) predicts the existence of a 

heavy particle that decays into two photons

● From other experiments it was known that we should 

look for it in the mass region between 116 and 127 

GeV

● Experiment: collide two protons with very high energy 

(7-8 TeV) and hope it will produce a new particle

● From simulations we know what the outcome should 

be if there’s no new particle produced

● With this information, we can extract the new signal

● Which differs with more than 5σ from the expected 

(background)

● In particle physics 5σ confidence means a discovery
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Particle track reconstruction

● Particle detectors generate a vast amount of multidimensional 

(up to over 100 million channels) readout data

○ Every channel (dimension) corresponds to detector section

● Collaborations at LHC predict they will generate 1 - 3 TB/s in the 2 years (ALICE)

○ In smaller experiments it’s about ~200 - 300 GB/s

● In each detector event (timeframe, microseconds) particles pass through

○ Path, momentum, charge, etc. of each particle has to be known for physics analysis - 

- track reconstruction

● Data is often sparse

○ Each particle interacts only with a small part of the detector

● Mainly classic (and difficult to parallelize) algorithms were used for this task
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Machine learning for track reconstruction

● In 2018 and 2019 TrackML Challenge on Kaggle was organised by CERN

● Results were mixed, but graph neural networks (GNNs) turned out to be the 

most promising approach

● Since then collaborations at CERN and other facilities evaluate and improve 

GNN-based solutions for their tasks

● Main difficulties include 

○ Efficient transformation of readout data into graphs

○ Complexity of detectors (size and existence of multiple subsystems of different 

characteristics)
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Example: PANDA Forward Tracker

● PANDA is an experiment under construction 

at FAIR Facility (Darmstadt, Germany)

● FT is a relatively small (sub)detector 

○ ~12k straws with which particles interact

○ Grouped into 6 stations and 48 layers

○ Each straw is an additional input channel

○ Easy to model in a graph structure
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GNNs in PANDA FT

Input

● Interactions of particles with straw in one 

detector event

● Transformed into graph structure:

○ Connect every hitted straw with all 

hitted straws in adjacent layers
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GNNs in PANDA FT

Output:

● Ideally output should be the set of separate 

graphs representing particle tracks

● In real world it contains additional edges that 

may lower accuracy
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GNNs in PANDA FT: Results and remarks

● GNN-based approach was tested with simulated data 

○ Synthetic case, homogeneous dataset

● Meets accuracy requirements

● Performance needs some improvement

○ Especially the step of graph generation from raw data

● Number of edges in input graph can be lowered by eliminating physically impossible 

connections

● Similar approaches studied by other experiments (CERN), often more advanced
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Detector event simulation

● Critical for conducting experiments

● But also very important

○ During design phase of new devices

○ For evaluation/maintenance of detectors and algorithms

● Traditionally conducted using Monte Carlo methods

○ Software: Geant3, Geant4, PYTHIA

● Consume a lot of computational resources

● More data collected in larger new experiments result in need for 

more simulations for adequate statistics
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Machine learning for detector simulation
● Variations of generative adversarial networks (GANs) proposed

● Challenges

○ Detector response vary a lot depending on type of particle and its physical 

properties

○ Generated (simulated) data has to be accurate to a certain level
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Example: ATLAS calorimeters simulation

● ATLAS is located at LHC and is the largest particle physics 

experiment worldwide

● It’s expected to be the one to discover new physics

● As a result it needs cary large sets of simulation data for 

statistics

○ 40% of ATLAS’ CPU computation resources is consumed 

for simulations

○ Computing  infrastructure won’t fulfill the needs with 

current simulation software

● Classic Monte Carlo simulation methods are CPU-bound 

and vary hard or impossible to parallelize for GPUs

● Machine learning and neural networks are explored as one 

of alternatives
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ATLAS experiment and AtlFast3 framework

● The AtlFast3 framework was proposed for ATLAS

○ Combines current Monte Carlo tool (Geant4) with simplified simulation 

(FastrCaloSim) and GAN-based simulation (FastCaloGan)

○ Depending on subsystem of the detector and simulated particle
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ATLAS experiment and AtlFast3 framework
● 5x overall performance improvement (CPU-time) 

○ 500x in calorimeter subsystem!

○ with ‘2%’ accuracy drop

● Usage of GANs is limited to one type of particles in one subsystem

○ Other areas will probably require different, or at least, differently trained, models

● Research on broader usage of GANs as well as improved performance and accuracy 

continues
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Neural networks accelerated on FPGA

What is FPGA?

● FPGA - Field Programmable Gate Array

● A set (array) of logic building blocks that can 

behave as any kind of logic gate each

● Accelerated algorithm is mapped directly to 

the hardware (like in custom chip)

● Can be programmed with high-level languages 

(C++-based)

● Are now available as accelerator cards similar 

to GPUs used for NN training (Xilinx Alveo)
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Neural networks accelerated on FPGA

● Processing of live data in experiments (and other applications) is often constrained in terms 

of computational resources and latency

● FPGA-based accelerators have unique capabilities

○ Upper bound on processing time can be strictly defined in clock cycles

○ % of chip resources used by each accelerated procedure is well-known

○ Many low level optimisation are possible and supported by hardware and 

programming tools

○ e.g. loop unrolling or usage of arbitrary precision fixed-point arithmetic types

● There are tools available (hls4ml) that enable compilation of Keras, PyTorch and 

TensorFlow code for FPGAs
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Neural networks accelerated on FPGA

● Research at CERN, Caltech and Google

● Extension of Keras and hls4ml 

○ Enables fixed-point arithmetic for network parameters

○ For each network layer separately

● Results in significant reduction in on-chip resource usage for inference (4-layer dense NN)

○ With small impact on accuracy

● May be beneficial for many high-throughput, low-latency applications

● As well as resource constrained ones (IoT, robotics?)
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