Al inference acceleration on FPGA

AIRA Seminar, 23.06.2022

Hardware Acceleration Lab Bartosz Soból

Outline

- What is an FPGA?
- Differences between CPU, GPU and FPGA
- Inference software with case studies
- What about training?
- FPGA@FAIS

What is an FPGA?

- Field Programmable Gate Array
 - array of **universal** logic blocks
 - that can be **reprogrammed**
 - $\circ \quad \text{at any time} \quad$
- Algorithms are mapped directly into hardware
- Supporting components: I/O, memory, DSPs, ...

FPGA characteristics

• Amount of chip resources used by algorithm is known

instr 2

- Upper bound on processing time latency in clock cycles is strictly defined
- Arbitrary data types can be implemented efficiently in hardware

instr 3

- eg. n-bit integer, fixed point types
- Pipeline processing of data streams

instr 1

Data 1

time

Data 2	÷	instr 1	instr 2	instr 3	instr 4	instr 5		
Data 4			instr 1	instr 2	instr 3	instr 4	instr 5	
Data 4				instr 1	instr 2	instr 3	instr 4	instr 5

instr 4

CPU vs. GPU vs. FPGA

instr 1 data 1 instr 2 data 2 instr 3 data 3 instr 4 data 4

- Single Instruction Single Data
- Fixed architecture and instruction set
- High clock frequency: 2 5 GHz
- Executes programs
- Sequential/parallel computing
- Operating System

- Single Instruction Multiple Data
- Fixed architecture and instruction set
- Medium clock frequency: ~1 GHz
- Executes parts od programs (kernels)
- Parallel computing
- Accelerator platform

instr 1	data 11	data n1
instr 2	data 12	data n2
instr 3	data 13	data n3
instr 4	data 14	data n4

- Multiple Instruction Multiple Data
- Flexible architecture and instruction set
- Low clock frequency: < 500 MHz
- Executes hardware design (can be kernel)
- Parallel/pipeline computing
- Standalone or accelerator platform

Raspberry Pi 4

NVIDIA Jetson Nano

AMD Xilinx Alveo U250

hls4ml

- Python package, developed as part of Fast Machine Learning Lab project
- Aims to translate pretrained models (PyTorch, TensorFlow, Keras, QKeras)
 - Into HLS (C++) code that can be compiled into FPGA firmware
 - Support for MLP, CNN, experimental RNN/LSTM/GRU
 - Support for all kinds of Xilinx devices (with enough resources) and also Intel
- Resulting design can be optimised for latency / throughput / resource usage

fastmachinelearning.org

Hls4ml - optimisations

- **Precision/quantization** customizable fixed-point arithmetic
 - Post-training in code/config simple casting to lower precision
 - Training-aware imported from QKeras models
- Utilities to test accuracy drop after post-training quantization

Hls4ml - optimisations

- **Reuse factor** how many times multiplying unit is used in layer calculation
 - Higher reuse factor ->
 Lower latency, higher throughput
 - Lower reuse factor ->
 Lower resource usage

fastmachinelearning.org

hls4ml - use case - CMS L1 trigger

- CMS second largest experiment at Large Hadron Collider (CERN)
- L1 trigger first level data filtering, reducing data rate for further processing

- Events (datasets) coming in with frequency 40MHz, designed for >100TB/s with future upgrades
- Latency constraint (~1 microsecond)

hls4ml - use case - CMS L1 trigger - ML solution

- ML techniques perform very well for this case
 - But it's hard to meet latency/throughput expectations on CPU/GPU
 - Traditional FPGA development: expensive and time-consuming
 - Usually simple models, a few layers, dense
- Solution use existing models and automatically port to FPGA -
- Studied model:

Jet tagging with 3-hidden layer MLP, 4.5k parameters

hls4ml - use case - CMS L1 trigger - Results

Vitis Al

- Official Xilinx stack for Al inference
 - Relatively new (2020)
- Basic concept similar to hls4ml
 - Take pretrained model and translate for FPGA
 - Different, more general implementation
 - More complete feature set
 - Requires host CPU
 - Supports wide range of Xilinx MPSoC devices with ARM cores and Alveo accelerators

Vitis Al

- Model development layer
 - Framework support,
 - Pre-prepared models
- Optimisations layer
 - Training-aware pruner and quantizer,
 - Profiler
- Hardware layer DPU
 - Universal logic unit
 - Domain Specific Architecture
 - Instruction set for NN acceleration
 - Precompiled

Vitis AI - DPU-based architecture

- DPU can act as specialized coprocessors,
 - are, in fact, programmed blocks on FPGA
- Multiple DPUs can run on single FPGA
- DPUs can accelerate MLP, CNN, RNN models
- Multiple variants for
 - Quantization method and bitwidth
 - Platform-specific features (HBM memory)
- Models aren't compiled to FPGA firmware, but to DPU instruction set
 - faster compilation and deployment

Vitis AI - use case - low-power DeepSense

- DeepSense multimodal ML framework for
 - activity recognition based on data from gyroscope and accelerometer
- **Goal** achieve low-power and low-latency inference in DeepSense
- Approach Vitis AI applied on small Xilinx MPSoCs: Ultra96 and ZCU102
 - Baseline comparison with LG Nexus 5 smartphone and Raspberry Pi 3

Resource	Ultra96-V2	ZCU102	
LUT (K)	154	600	
FF (K)	141	548	
BRAM (Mb)	7.6	32.1	
DSP Slices	360	2,520	

Vitis AI - use case - low-power DeepSense

- Hardware design based on 2 DPUs
- Different configurations tested

Config.	Board	PE Clock Frequency (MHz)	RAM usage	DSP usage	Low-Power Mode
U96-1	Ultra96	400	High	Low	Off
U96-2	Ultra96	400	Low	Low	Off
U96-3	Ultra96	400	Low	High	Off
U96-4	Ultra96	400	Low	High	On
ZCU-1	ZCU102	600	Low	High	Off
ZCU-2	ZCU102	600	Low	High	On

- Compared with:
 - Standard float32 model on Nexus and RPi
 - Quantized int8 model on RPi

Vitis AI - use case - low-power DeepSense

_		Baseline	RPi3-q	U96/ZCU
_	Accuracy	95.31%	94.69%	94.19%

Licensing

- hls4ml open-source, free, Apache License
- Vitis AI open-source, free, Apache License
 - Except AI Optimizer (pruner) which is proprietary and paid (researchers can apply for free temporary license)

Training on FPGA?

- Training require a lot of resource
 - Large FPGA-based PCIe accelerators similar to GPUs are a relatively new topic (Xilinx Alveo)
- Not much effort put into this topic, GPUs are good enough
- A few research projects exploring possibilities, mostly on CNNs (e.g. DarkFPGA, Barista)
 - Whether modern FPGA architectures can perform competitively with GPU is an open question
 - Usually not raw performance (speed) but energy efficiency is compared

FPGA AI activities at FAIS

- MSc student, Grzegorz Kozioł, performing in-house evaluation of Vitis AI stack
 - Custom CNN networks and ResNet models
 - Pruning, quantization
 - Computing performance, accuracy
 - Profiling tools
- Gathering know-how
- Potential future use: J-PET project, PANDA experiment

FPGA resources at FAIS

- AMD Xilinx Alveo accelerator cards: 1xU280, and 1xU50
- Two AMD EPYC servers with 2xU280 each to arrive in July
- Many development boards with smaller chips
- We also have 2xRTX2080 GPU
- Contact us if you need access
 - grzegorz.korcyl@uj.edu.pl
 - <u>bartosz.sobol@doctoral.uj.edu.pl</u>

Summary

- There exist usable tools for deploying NN inference on FPGAs
 - They perform best on power or latency constrained applications
 - They improve rapidly, aggressive development (mostly from Xilinx)
- Training NN on FPGA is one open topic
- We have solid FPGA resources available at FAIS