
HIERARCHICAL CORRELATION RECONSTRUCTION 
for time series, conditional distribution (Bayes) models … 

 (nonlinear, adaptive, all-directional) artificial neurons 

How to model/estimate density from a data sample? 
MSE fit polynomial 𝜌(𝑥) = ∑ 𝑎𝑓𝑓∈𝐵 𝑓(𝑥)   (using orthonormal basis) 

also for joint distribution, non-stationarity, missing data 
 

 Moments/cumulants 𝝆(𝒙) = ∑ 𝒂𝒇𝒇 𝒇(𝒙)   Machine learning 

# parameters low – rough from low to high high - accurate 
estimation e.g.  𝑚𝑘 =

1

|𝑋|
∑ 𝑥𝑘

𝑥∈𝑋  𝑎𝑓 =
1

|𝑋|
∑ 𝑓(𝑥)𝑥∈𝑋   usually iteration 

Interpretable? yes Yes: mixed moments depends 
Independently? yes Yes (adapt, missing) depends 

Unique? yes yes (MSE) often huge freedom 

Accuracy? controllable controllable usually uncontrollable 

Density? moment problem YES:    ∑ 𝒂𝒇𝒇 𝒇(𝒙) depends 

→ complete  depends  yes depends 

Jarek Duda, UJ 

  

https://en.wikipedia.org/wiki/Moment_problem
http://th.if.uj.edu.pl/~dudaj/


𝑛 = 100 size 1D sample (from degree = 3), density estimated as polynomial: 

                on [-1,1]          ≈             (deg 𝑚 → ∞ leads to sum of Dirac deltas) 

 

  



Derivation:             𝑛 = 25 size sample 

KDE (kernel density estimation):  

𝑔𝜖 ∶   𝜖-width Gaussian in each point  

Find 𝜌𝒂(𝒙) = ∑ 𝑎𝒋𝑓𝒋(𝑥)𝒋   minim. MSE 

arg min
𝒂

∫ (𝜌𝒂 − 𝑔𝜖)2𝑑𝑥 =  

arg min
         𝒂

 ‖𝜌𝒂‖2 − 2⟨𝜌𝒂, 𝑔𝜖⟩ + ‖𝑔𝜖‖2 

Taking 𝜖 → 0,   〈𝜌𝒂, 𝑔𝜖〉 = ∑ 𝜌𝒂(𝑥)𝑥∈𝑋  

Removing    lim 
𝜖→0

‖𝑔𝜖‖2 = ∞     which does not affect parameters 𝒂 

Using orthonormal: ⟨𝑓𝑖 , 𝑓𝑗⟩ = ∫ 𝑓𝑖(𝑥)𝑓𝑗(𝑥)𝑑𝑥 = 𝛿𝑖𝑗                e.g. on [0,1]𝑑 

arg min 
        𝒂

‖𝜌𝒂‖2 −
2

𝑛
∑ 𝜌𝒂(𝑥) = arg min 

              𝒂
∑(𝑎𝒋)

2

𝒋

−
2

𝑛
∑ ∑ 𝑎𝒋

𝒋∈𝐵

𝑓𝒋(𝑥)

𝑥∈𝑋𝑥∈𝑋

 

minimum:   𝜕𝑎𝒋
= 0       ⇒          𝑎𝒋 =

1

𝑛
∑ 𝑓𝒋(𝑥)

𝑥∈𝑋

 

https://arxiv.org/pdf/1702.02144


In practice: normalize each variable  

to ~ uniform distribution: 𝒙𝒕 = 𝐂𝐃𝐅(𝒚𝒕) 

(1/2: median, position: quantile, like copula) 

Then fit polynomial as joint distribution  

(daily log returns: ln(𝑣𝑡+1/𝑣𝑡)) 

 

  

https://en.wikipedia.org/wiki/Copula_(probability_theory)


Basic application: many mixed-moment features e.g. for time series classification 

 Standard: pairwise correlation “11”, here: also higher, “triple+”wise, time dependent 

  



Normalization 𝒙 = 𝐂𝐃𝐅(𝒚) to 𝒙 ∼ 𝐮𝐧𝐢𝐟𝐨𝐫𝐦[𝟎, 𝟏] 

Generalized normal distribution/EPD 𝜌 ~ exp(−|𝑥|𝛽)  

              

     Laplace, MLE estim.: 

              𝜌 =
1

2𝑏
exp (−

|𝑥−𝜇|

𝑏
) 

            �̂� = median 

               �̂� =
1

𝑁
∑ |𝑥𝑖 − �̂�|𝑖  

 

           Normalization 

              contains tail model 

 

Lévy/stable distribution 𝜌 ~ |𝑥|−1−𝛼 tail (∞ moments):  

 

          Student’s t-dist.: 

          𝜌 ∝ (1 +
𝑡2

𝑣
)

−
𝑣+1

2
 

         Gausŝ of 𝑛 = 𝑣 − 1 

         Cauchy for 𝑣 = 1 

          ∞ moments  ≥ 𝑣  

https://en.wikipedia.org/wiki/Generalized_normal_distribution
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Cauchy_distribution


Adaptivity: models evolving with time  

We can normalize with 𝑥𝑡 = CDF𝑡(𝑦𝑡) 

e.g. Gaussian with varying 𝜎 like in ARCH  

e.g. average → exponential moving average 
 

EPD width:   𝜎�̂� =
1

𝑛
∑ |𝑥 − 𝜇|𝜅

𝑥∈𝑋         →  

    𝜎�̂�𝑇+1
= 𝜂 𝜎�̂�𝑇

+ (1 − 𝜂) |𝑥𝑇 − 𝜇|𝜅 
 

Optimizing exponential moving criterion: 

log-lik:  𝜃𝑇 = argmin𝜃 ∑ 𝜂𝑇−𝑡 ln(𝜌𝜃(𝑥𝑡))𝑡<𝑇  

Preferably    𝜂 =  argmin𝜂 ∑ ln(𝜌𝜃𝑇(𝑥𝑇))𝑇  
 

Weighted linear regression: 𝛽 = argmin𝛽  ∑ 𝑤𝑖 ((𝑀𝛽)𝑖 − 𝑥𝑖)2
𝑖  

𝛽 = (𝑀𝑇𝑀)−1𝑀𝑇𝑥      ⇒     𝛽 = (𝑀𝑇  diag(𝑤) 𝑀)−1 𝑀𝑇 diag(𝑤) 𝑥  
 

Adaptive linear regression: 𝛽𝑇 = argmin𝛽  ∑ 𝜂𝑇−𝑡 ((𝑀𝛽)𝑡 − 𝑥𝑡)2
𝑡<𝑇   

𝛽𝑇 = (ℳ𝑇)−1𝑦𝑇                for exponential moving averages: 

   𝑦𝑇+1 = 𝜂(𝑦𝑇 + 𝑥𝑇𝑀𝑇⋅)                       ℳ𝑇+1 = 𝜂(ℳ𝑇 + (𝑀𝑇⋅)(𝑀𝑇⋅)
𝑇) 

https://arxiv.org/pdf/2003.02149
https://arxiv.org/pdf/1906.03238


E.g. for ARMA/ARCH enhancement 

Gaussian-based, often terrible LL 

(8𝜎:  1/3 ⋅ 1012 yrs … S&P 500: 1/10 yrs) 

(daily log returns for 29 Dow Jones) 

MLE gives much lower power 𝜅 ≪ 2: 

Having approximate parametric dist. 

we can normalize as in copula theory  

to 𝑥 ∼ uniform on [0,1] distribution: 

𝑥𝑡 = CDFparametric(𝑦𝑡) 

HCR:  Fit degree 𝑚 polynomial 

e.g. to (𝒙𝒕−𝟏, 𝒙𝒕) joint distribution 

can be evolving for nonstationary 

 

 

  

https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://sixfigureinvesting.com/2016/03/modeling-stock-market-returns-with-laplace-distribution-instead-of-normal/
https://arxiv.org/pdf/1807.04119
https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html
https://en.wikipedia.org/wiki/Copula_(probability_theory)


 

Also in higher dimensions e.g. [0,1]3:            

 𝜌(𝑥1, 𝑥2, 𝑥3) = ∑ 𝑎𝒋 

𝒋∈𝐵

𝑓𝑗1
(𝑥1)𝑓𝑗2

(𝑥2)𝑓𝑗3
(𝑥3) 

⇒ conditional distributions without Bayes 

MSE estimated from dataset 𝑋 ⊂ ℝ3 :  

 𝑎𝒋 =
1

|𝑋|
∑ 𝑓𝑗1

(𝑥1)𝑓𝑗2
(𝑥2)𝑓𝑗3

(𝑥3)

𝒙∈𝑋

 

For considered statistical dependencies:  

basis 𝐵 of considered mixed moments 

E.g. 𝑎𝒋 describes variance-variance between 

    𝐵 ∋ 𝒋 = (0000𝟐000𝟐000)  
   

𝑎𝒋 = 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 … 𝐋  

- over a subset for missing data -  we need only 𝑗 > 0 coordinates as 𝑓0 = 1 

- 𝑎𝒋
𝑡+1 = 𝜆𝑎𝒋 + (1 − 𝜆)𝑓𝒋(𝒙)   parameter evolution for nonstationary time series 

  



Having modelled joint distribution for missing data:      𝑎𝒋 =
1

|𝑋𝒋|
∑ 𝑓𝒋(𝒙)  𝒙∈𝑋𝒋

 

substituting known coordinates to  𝜌(𝒙) = ∑ 𝑎𝒋𝒋∈𝐵   𝑓𝑗1
(𝑥1) ⋅ … ⋅ 𝑓𝑗𝑑

(𝑥𝑑) 

we get joint distribution of missing coordinates  (conditionals avoiding Bayes) 

Imputation – modelling missing values, e.g. as expected value for each coordinate 

However, sometimes ambiguity, e.g. circle as sample below we can handle. 

Here we can model distribution of each missing coordinate as polynomial, 

or even joint distribution of multiple missing coordinates 

 

circle (2D) centered in (0.5,0.5), 𝑟 = 0.4  Knowing only 𝑥2 = 0.5,  𝑥1 = ? ? ? 

we can get e.g. (joint) distribution, or expected values for (2) clusters … 

 

 

 

https://arxiv.org/pdf/1804.06218


KDE – kernel density estimation 

e.g. 𝜖-radius Gaussian in each point   

- huge  #parameters  ~  #points 

- how to choose (ellipse?) radii??  

- doesn’t work in high dimension 

- terrible log-likelihood, generalization 

   as it localizes in the old points 

                            cross-validation: 

Polynomial: MSE fitted to 𝜖 → 0  

  

https://en.wikipedia.org/wiki/Kernel_density_estimation


Having density model, 

we can cheaply 

normalize  

e.g. to uniform 

𝑥 → 𝐶𝐷𝐹𝑦(𝑥) by lines: 

or generate random 

sample e.g. for 

 Monte-Carlo methods 

Generalization problem: e.g. could we avoid splitting into training + validation? 

𝑋 – test, 𝑌 – training set, how to choose function basis 𝐵 to maximize log-lik 𝑙 ? 

𝑎𝑗 =
1

|𝑌|
∑ 𝑓𝑗(𝑦)

𝑦∈𝑌

                                 𝜌(𝑥) = ∑ 𝑎𝑗  𝑓𝑗(𝑥)

𝑗∈𝐵

=
1

|𝑌|
∑ ∑ 𝑓𝑗(𝑦)𝑓𝑗(𝑥)

𝑦∈𝑌𝑗∈𝐵

 

𝑙 =
1

|𝑋|
∑ ln (1 + ∑ 𝑎𝑗𝑓𝑗(𝑥)

𝑗∈𝐵+

)

𝑥∈𝑋

         can we ask separately for 𝑗 about including in  𝐵? 

Assume training and test set have the same statistics, e.g. value, variance for 𝑎𝑗 … 



Economists: ~ copula theory                plots 

Guess one from usually single-parameter: 

2D complex formula, tough to estimate 

For more variables build tree (“vine”) … 

HCR – agnostic,  

any # of param. 

Between any pairs,  

also triples 

and more variables, 

Cheap to use,  

Cheat to estimate 

also to adapt,  

missing data  

but 𝜌 < 0 happens  
 

𝑚 = 9,   81 param. 

https://en.wikipedia.org/wiki/Copula_(probability_theory)
https://www.semanticscholar.org/paper/2-Copula-Theory-2-.-1-Sklar-%E2%80%99-s-Theorem-and-Copulas-Smith/e8a59cf14a861f23f8d69015ec093f6b04b86ea1/figure/1
https://en.wikipedia.org/wiki/Vine_copula


Predict value spread 

(bid-ask, DAX) from 

(price, volume, H-L) 

should be diagonal 

AMI, HLR – noise  

HCR – can handle 

predicting density 

→ expected value 

aXiv:1911.02361 

Stat. in Transition 

 

Density: additional 

variance:uncertainty 

skewness, kurtosis… 

find quantiles,  

Monte Carlo rand., 

Further nonlinear 𝑓 

𝑓(𝐸(𝑋)) ≠ 𝐸(𝑓(𝑋)) 

https://arxiv.org/abs/1911.02361
https://sit.stat.gov.pl/SiT/2020/5/gus_sit_2020_05.pdf


Least-squares linear regression to:  

1) predict value as linear combination 

2) HCR: predict first few moments 

each separately as linear combination 

then combine into predicted density. 

�̃�(𝑦|𝑥) = ∑ 𝑓𝑗(𝑦)

𝑗

∑ 𝛽𝑗𝑘𝑓𝑘(𝑥)

𝑘

 

𝜌(𝑦|𝑥) = max(�̃�(𝑦|𝑥), 0.03) /𝑁 

Examples                 normalization 

  



Large differences between companies – individual models give much better evaluation   



Choosing model size: predict ≈ 8 moments              Universality – searching for common 

basis of mixed moments – difficult problem                models with lowest evaluation loss 

  



37k households GUS data (arXiv:1812.08040, ICOAE) 

Find conditional distribution of equivalent income 

from 31 discrete variables and 4 continuous 

normalized to uniform on [0,1] by sorting (EDF):  

1/2 is median, 10% is 10% of population 

Credibility evaluation e.g. 70 years old close to median 

How to model it with standard machine learning? 

 
  

https://arxiv.org/pdf/1812.08040
https://link.springer.com/chapter/10.1007/978-3-030-38253-7_6
https://en.wikipedia.org/wiki/Empirical_distribution_function


 

  



Random 75% to train, 25% evaluation 

(expected value, sqrt(var)) of predicted 

 

Log-likelihood evaluation of 35 variables:  

Relevance: predicting from single variable 

Novelty: loss if without this variable 

Survey design – choosing best few variables  

  



 

 

 

 

 

 

 

 
 

Predict probability  

distributions of  

chemical  

properties for  

virtual screening  

(arXiv: 2207.11174) 

from 4860 Klek 

fingerprints 

 

https://arxiv.org/pdf/2207.11174


MSE value prediction: of expected value (only) 

Superiority of probability density modelling,  

prediction for extreme subset selection e.g. 

subsets of drugs most likely containing the best one 

A-B mixture: Pr(𝐴|𝑋 = 𝑥) =
𝑤 𝜌𝐴(𝑥)

𝑤 𝜌𝐴(𝑥)+(1−𝑤)𝜌𝐵(𝑥)
   

https://arxiv.org/pdf/2209.06211


Of probability 

distribution of 

redshift of 

Active Galactic 

Nuclei  

 

from  

21 variables: 

discrete, 

continuous, 

combined 

mostly  

describing  

spectrum 

 

 

arXiv: 2206.06194 

  

https://arxiv.org/pdf/2206.06194


Canonical correlation analysis to optimize features 

for 21+1 variables, model (l1 regular.), var. evaluation  

  

https://en.wikipedia.org/wiki/Canonical_correlation


Non-stationarity analysis for blazars  

https://arxiv.org/pdf/2005.14040  

Evolving density for EPD normalized 

𝜌𝑡(𝑥) = ∑ 𝑎𝑗(𝑡)

𝑗∈𝐵

 𝑓𝑗(𝑥)  

𝑎𝑗(𝑡 + 1) = 𝑎𝑗(𝑡) + (1 − 𝜂) (𝑓𝑗(𝑥𝑡) − 𝑎𝑗(𝑡)) 

𝜂 to maximize log-likelihood: 

 

 

 

 

 

 

 

(𝜂, loglik): nonstationarity evaluation 

1/time, “localization” 

https://en.wikipedia.org/wiki/Blazar
https://arxiv.org/pdf/2005.14040


Generalized central limit thm: sum of i.i.d. 𝜌 ∼ |𝑥|−𝛼−1 infinite variance 

variables lead to stable distribution,                 product for log-stable here  

  

https://en.wikipedia.org/wiki/Stable_distribution


Multi-feature 

autocorrelation  

analysis (MNRAS):  

all (𝑦𝑡 , 𝑦𝑡+𝑙) pairs 
 

static 2D for each 𝑙 
𝜌(𝑥) = ∑ 𝑎𝑗𝑗∈𝐵  𝑓𝑗(𝑥)  

𝑎𝑗 =
1

|𝑋|
∑ 𝑓𝑗(𝑥)𝑥∈𝑋   

Basis up to 4th moment 
𝐵 = {(𝑗, 𝑘): 0 ≤ 𝑗, 𝑘 ≤ 4} 

some 𝑓𝑗𝑘(𝑦𝑡 , 𝑦𝑡+𝑙)  

 

Some 𝑎𝑗𝑘(𝑙)  

sequences 
 

PCA feature select. 

to reduce basis 

25 → 3, interpret. 
 

Minus marginals: 

�̃�𝑗𝑘 = 𝑎𝑗𝑘 − 𝑎𝑗0𝑎0𝑘  

for    𝑗, 𝑘 ≥ 1   

https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab2574/6368871


          



Multi-feature 

correlation 

analysis 

(CEJOR) 

evolving in  

time like  

DCC – dynamic 

conditional 

correlations 

E.g. for 

Contagion 

analysis 

between  

markets 

e.g. to detects 

crucial events  

https://link.springer.com/article/10.1007/s10100-021-00756-3
https://www.jstor.org/stable/1392121


  1/mean P-values of event detection: 

  



Biology-inspired artificial neuron? (HCR): 
 

Directly learns conditional probability distributions 

can exploit them by predicting in flexible directions 

How to do deep learning with them – learn long correlation chains? 

… how to learn intermediate layers of distinguishing features?  

 

Hierarchical correlation reconstruction allows for example for: 

- Imputation of learned label (distribution) for supervised learning, 

- supervised learning based on comparison of densities, 

- Analytically differentiate, e.g. local maxima as clusters, 

- Evaluate probability, find outliers (low probability), anomaly, 

- Combine multiple models by accurate modelling their joint distr., 

- Compare statistics of samples (e.g. KL, direct distance between 𝑎𝑓), 

- Integrate, e.g. find high probability paths (morphing), 

https://arxiv.org/pdf/1804.06218

