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Physics-based, data-driven
and hybrid modeling



Physics-based modeling

Pros:

- Based on theory describing given phenomenon

- Interpretable
- Rather easy to analyze properties like stability and uncertainty

Cons: Full physics
- Uses only known and understood physics

- Often simplification and assumptions are made e cotved o
physics
Wthh may ﬂOt hOld (numerical solution under

computational constraints)

- Can be computationally ineffective for more
complex problems

Modeled physics
(governing equations)

Observed
(understood)
physics




Data-driven modeling

Pros:
- Can model both known and unknown physics without prior knowledge of physical laws
- Good performance even on complex problem

- Machine learning outperforms conventional approaches in number of fields

Cons:
Requires (lots of) data
May not conform to known physics

Rather hard to analyze properties like stability
and uncertainty

Harder to provide explanations




Hybrid modeling

The idea is to mix both approaches somehow. For example:

- Mixture of models — different parts of the problems are modeled using
different approaches

- ,Committee” models — modeling using both PB and DD models and
combining the results (e. g. by averaging)

- Residual modeling — first PBM is used, and errors of such approach are
modeled with the use of DDM

- Embedding known physics into data driven models



Neural networks with embedded physics



Physics guided neural networks

General idea is to make neural network ,aware” of known physics

physics may be ,baked” into neural network
it may be used as a soft constraint
it may be used only to ,guide” NN towards better solutions

In the literature terminology still seems to be a bit
blurry. In some places term physics-guided appears
interchangeably with  physics-informed and  physics-
encoded, in others they are distinguished.

More about it after we introduce methods of
embedding physics inside networks.
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Obijectives of embedding physics inside NN

- Improving predictions quality beyond that of PB models and DD models
- Accounting for unknown physics/simplifications made in known physics
- Improving data-efficiency
- Improving generalization
- Asserting scientific correctness
- In finances, there is a lot of unknown physics and noise in the data + data is limited

- Parametrization of physics models
- PB models are used to model processes, but they have to be calibrated

- Calibration with the use of ML is computationally more efficient than traditional
methods

- In most cases black-box ML models are used to calibrate, it can be improved by
embedding physics in them

- In finances, models often have to be calibrated to market situation periodically or
continuously



Obijectives of embedding physics inside NN

- Downscaling

- predict finer-resolution variables from coarser-resolution variables

- example: cloud-resolving models need to be run at sub-kilometer resolution to be
effective, but it is not feasible for global climate models

- Reduced-Order Models

- computationally inexpensive representations of more complex models

- dimensionality reduction - projection of input space to lower-dimensional subspace
-, controlled loss of accuracy”

- ML-aided construction of ROMs



Obijectives of embedding physics inside NN

- Improving data generation capabilities
- PB approaches are often computationally inefficient (and are limited to known physics)
- generative ML models, like GANs or VAEs are feasible alternative

- embedding physics in NN approaches can (and in some cases it already does) improve
efficiency

- Efficiently Solving Partial Differential Equations

- solving them using NN greatly improves computational efficiency

- embedding physics may increase accuracy, impose physical invariants and increase
trening effectiveness



Approaches to embedding physics inside NN



Training a NN to represent known physics

Artificial
drivers

The oldest approach to ,embed” physics inside neural network.

Known
physics

e

Labeled
artificial —> NN model
drivers

NN is just resembling the original physical model.

Used mostly to improve computational efficiency.
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Hybrid physics-ML model

Drivers \

Known Hybrid -
: Y
physics model
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One of the simplest ways of incorporating physics in NN.

Does not impose any constraint on NN, there is no control on whether outputs will be
physically correct. In some cases, NN may even ignore known physics part.

May be useful when known physics explain only small portion of data variance.



Physics-guided loss function

Training loss Regularization term

\ /

Loss = Losstgy(Y,¥) — AR(W)

!

Loss = Losspry(Y,Y) — AgR(W) + ApyyLosspyy (V)

T~

. . : Physics loss
Depending on Apyy may be effectively a soft or hard constraint. Quantifies model inaccuracy
Useful especially when there is hard physical constrain on the w. r. to known physics

process.



Physics-guided loss function

Physical relationship between variable Y and other variables Z' may be written using
following equations (G and H are generic forms of physics equations):

GY,z)=0
HY,Z)<0

Losspyy(Y) can then take the following form:

Losspuy (V) = ||G(7, 2)||” + ReLU (3£(7, Z))



Physics-guided architecture

The problem with previous approaches is that even though some physics

is enforced in NN, or it's guided towards physics, the NN itself is still a
black box.

The idea is to change the architecture of NN in such a way that it's making
use of the specifics of the problem solved.

With such approach NN is truly aware of the physics (at least a part of it).
Some hard constraints can be imposed such way.



Physics-guided architecture - example

Lake temperature modeling: extension of classic LSTM cell.
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Monotonicity-preserving LSTM Architecture. Components in red represent physics-informed innovations in LSTM. Z
represents the density values at a specific depth d, &, is the increase of density from layer d — 1 to d. The value of § is
gauranteed to be non-negative as it is generated from an ReLU layer. Such an architecture ensures the monotonic increase of

density values as depth increases.

Source: Daw, A, Thomas, R. Q., Carey, C. C, Read, J. S, Appling, A. P, & Karpatne, A. (2020).
Physics-Guided Architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling.



Residual modeling
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The idea here is to model only ,errors”™ of physical models.

The most important downside is that NN is not aware of any known physics and there
is no control on whether outputs will be physically correct.



Physics-guided initialization

- Variation on transfer learning

- Model is pre-trained on artificial data generated with the use of known physics

- Does not truly enforce physics, but may be used as helper for other approaches
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Few words about the nhomenclature

Some sources use physics-guided and physics-informed terms interchangeably (and
physics-encoded sometimes)

Recent source proposed the following distinction:

Physics-guided neural networks — NN trained to represent known physics model, used
mostly for performance purposes

Physics-informed neural networks — NN softly constrained by physics (e. g. by using
physics-guided loss function)

Physics-encoded neural networks — NN hardly constrained by physics (physics is
embedded in the architecture)



Example physics with application in finances



Lotka-Volterra model

[t is best known for being used to describe predator-prey population relationship.

Generalized version can be used to describe relationship between two or more agents
(including predator-prey, competition and mutualism relationships).
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Lotka-Volterra model in crypto price modeling

Price
Neural predictions
_
Network (for one or
both coins)
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fitting parametrized
Lotka-Volterra
model

Lotka-Volterra
model

A 4

Lotka-Volterra model was used to model pricing mechanisms on crypto market.

Such approach in long run did not turn out very well, in short term it was slightly better, but
still not satisfactory.



Lotka-Volterra model in price mechanism modeling

What was done:
- modeling crypto prices/return rates using Lotka-Volterra model

- using such models to guide NN (only simple way of feeding model output into NN
was used)

What can be done:
- Modeling other crypto parameters, like transactions count
- Modeling market participants/groups interactions (data availibility is a challenge)

- Try different ways of incorporating LV model into NN
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Another example application:

Supporting model calibration with neural networks

Wiener process

/
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Supporting model calibration with neural networks

As an example, let's take Heston model, Black-Scholes model extension. There are
multiple parameters to calibrate.

dS; = uSedt + /v S dW; + (e**%€ — 1)S,dq, St, = So

dvy = k(V —v)dt + y /v dWY, Ve
dWSdWyY = pdt

o — Yo



Supporting model calibration with neural networks

Classic option quotation using Heston model looks as follows:

( PsK, V0, V, ¥ W .| Heston WCOS method  Option |Brent | [mplied
L K.7,S0.7 J model J price volatility

The calibration of this model is performed with the use of non-gradient heuristics such
as Differential Evolution or Particle Swarm Optimization.

Two bottlenecks arise - the time needed to evaluate the model in the calibration
process and the pace of the calibration itself.



Supporting model calibration with neural networks

To eliminate the first bottleneck, neural network can be used, mapping the model
parameters {p, k, vy, V,V¥; K, T, Sg, 7} to the price of an option V. The valuation
process will be as follows:

( P, K, Vo, ﬁs?) R Heston Heston—ANNf Option IV-ANN Implied
. KoSer model | price volatility

Above NN are not physically constrained in any way though.

Improving on the second bottleneck is an open problem.

Source: Liu, S, Borovykh, A, Grzelak, L. A, & Oosterlee, C. W. (2019). A neural network-based framework
for financial model calibration.



What else can they be used for?

- Markets synchronization (e. g. dependencies between stock, bond and
bullion markets)

- Contagion effect on the markets (e. g. spread of crisis from one
market/region to another)

- Data generation

- Model calibration

- Price discovery mechanisms



Thank you for your attention
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