
Physics guided neural networks with
application to financial modeling

Bartłomiej Małkus

PhD candidate @ Jagiellonian University

24.11.2022

Outline

· Physics-based, data-driven and hybrid modeling

· Neural networks with embedded physics

· Approaches to embed physics in neural networks

· Example physics which may be solved with PGNN

· Financial applications

Physics-based, data-driven
and hybrid modeling

Physics-based modeling

Pros:

· Based on theory describing given phenomenon

· Interpretable

· Rather easy to analyze properties like stability and uncertainty

Cons:

· Uses only known and understood physics

· Often simplification and assumptions are made
which may not hold

· Can be computationally ineffective for more
complex problems

Data-driven modeling

Pros:

· Can model both known and unknown physics without prior knowledge of physical laws

· Good performance even on complex problem

· Machine learning outperforms conventional approaches in number of fields

Cons:

· Requires (lots of) data

· May not conform to known physics

· Rather hard to analyze properties like stability
and uncertainty

· Harder to provide explanations

Hybrid modeling

The idea is to mix both approaches somehow. For example:

· Mixture of models – different parts of the problems are modeled using
different approaches

· „Committee” models – modeling using both PB and DD models and
combining the results (e. g. by averaging)

· Residual modeling – first PBM is used, and errors of such approach are
modeled with the use of DDM

· Embedding known physics into data driven models

Neural networks with embedded physics

Physics guided neural networks

General idea is to make neural network „aware” of known physics

· physics may be „baked” into neural network

· it may be used as a soft constraint

· it may be used only to „guide” NN towards better solutions

In the literature terminology still seems to be a bit
blurry. In some places term physics-guided appears
interchangeably with physics-informed and physics-
encoded, in others they are distinguished.

More about it after we introduce methods of
embedding physics inside networks.

Objectives of embedding physics inside NN

· Improving predictions quality beyond that of PB models and DD models
· Accounting for unknown physics/simplifications made in known physics

· Improving data-efficiency

· Improving generalization

· Asserting scientific correctness

· In finances, there is a lot of unknown physics and noise in the data + data is limited

· Parametrization of physics models
· PB models are used to model processes, but they have to be calibrated

· Calibration with the use of ML is computationally more efficient than traditional
methods

· In most cases black-box ML models are used to calibrate, it can be improved by
embedding physics in them

· In finances, models often have to be calibrated to market situation periodically or
continuously

Objectives of embedding physics inside NN

· Downscaling

· predict finer-resolution variables from coarser-resolution variables

· example: cloud-resolving models need to be run at sub-kilometer resolution to be
effective, but it is not feasible for global climate models

· Reduced-Order Models

· computationally inexpensive representations of more complex models

· dimensionality reduction - projection of input space to lower-dimensional subspace

· „controlled loss of accuracy”

· ML-aided construction of ROMs

Objectives of embedding physics inside NN

· Improving data generation capabilities

· PB approaches are often computationally inefficient (and are limited to known physics)

· generative ML models, like GANs or VAEs are feasible alternative

· embedding physics in NN approaches can (and in some cases it already does) improve
efficiency

· Efficiently Solving Partial Differential Equations

· solving them using NN greatly improves computational efficiency

· embedding physics may increase accuracy, impose physical invariants and increase
trening effectiveness

Approaches to embedding physics inside NN

Training a NN to represent known physics

The oldest approach to „embed” physics inside neural network.

NN is just resembling the original physical model.

Used mostly to improve computational efficiency.

Artificial
drivers

Known
physics

Labeled
artificial
drivers

NN model
NN representing
known physics

training

Hybrid physics-ML model

One of the simplest ways of incorporating physics in NN.

Does not impose any constraint on NN, there is no control on whether outputs will be
physically correct. In some cases, NN may even ignore known physics part.

May be useful when known physics explain only small portion of data variance.

Drivers

Known
physics

𝑌𝑃𝐻𝑌

Hybrid
model

෠𝑌

Physics-guided loss function

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑇𝑅𝑁 𝑌, ෠𝑌 − 𝜆𝑅𝑅 𝑊 + 𝜆𝑃𝐻𝑌𝐿𝑜𝑠𝑠𝑃𝐻𝑌(෠𝑌)

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑇𝑅𝑁 𝑌, ෠𝑌 − 𝜆𝑅 𝑊

Training loss Regularization term

Physics loss
Quantifies model inaccuracy

w. r. to known physics

Depending on 𝜆𝑃𝐻𝑌 may be effectively a soft or hard constraint.

Useful especially when there is hard physical constrain on the
process.

Physics-guided loss function

Physical relationship between variable 𝑌 and other variables 𝒁 may be written using
following equations (𝒢 and ℋ are generic forms of physics equations):

𝒢 𝑌, 𝒁 = 0

ℋ 𝑌, 𝒁 ≤ 0

𝐿𝑜𝑠𝑠𝑃𝐻𝑌(෠𝑌) can then take the following form:

𝐿𝑜𝑠𝑠𝑃𝐻𝑌(෠𝑌) = 𝒢 ෠𝑌, 𝒁
2
+ 𝑅𝑒𝐿𝑈 ℋ ෠𝑌, 𝒁

Physics-guided architecture

The problem with previous approaches is that even though some physics
is enforced in NN, or it’s guided towards physics, the NN itself is still a
black box.

The idea is to change the architecture of NN in such a way that it’s making
use of the specifics of the problem solved.

With such approach NN is truly aware of the physics (at least a part of it).

Some hard constraints can be imposed such way.

Physics-guided architecture - example

Lake temperature modeling: extension of classic LSTM cell.

Monotonicity-preserving LSTM Architecture. Components in red represent physics-informed innovations in LSTM. 𝑍𝑑
represents the density values at a specific depth 𝑑, 𝛿𝑑 is the increase of density from layer 𝑑 − 1 to 𝑑. The value of 𝛿 is
gauranteed to be non-negative as it is generated from an ReLU layer. Such an architecture ensures the monotonic increase of
density values as depth increases.

Source: Daw, A., Thomas, R. Q., Carey, C. C., Read, J. S., Appling, A. P., & Karpatne, A. (2020).
Physics-Guided Architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling.

Lake depth – water
density relationship

Residual modeling

The idea here is to model only „errors” of physical models.

The most important downside is that NN is not aware of any known physics and there
is no control on whether outputs will be physically correct.

Physics-guided initialization

· Variation on transfer learning

· Model is pre-trained on artificial data generated with the use of known physics

· Does not truly enforce physics, but may be used as helper for other approaches

Artificial
drivers

Known
physics

Labeled
artificial
drivers

NN model

Pretrained
NN model

pretraining

Labeled
real-life
drivers

Final NN model

actual training

Few words about the nomenclature

Some sources use physics-guided and physics-informed terms interchangeably (and
physics-encoded sometimes)

Recent source proposed the following distinction:

Physics-guided neural networks – NN trained to represent known physics model, used
mostly for performance purposes

Physics-informed neural networks – NN softly constrained by physics (e. g. by using
physics-guided loss function)

Physics-encoded neural networks – NN hardly constrained by physics (physics is
embedded in the architecture)

Example physics with application in finances

Lotka-Volterra model

It is best known for being used to describe predator-prey population relationship.

Generalized version can be used to describe relationship between two or more agents
(including predator-prey, competition and mutualism relationships).

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 + 𝛽𝑦𝑥

𝑑𝑦

𝑑𝑡
= 𝛾𝑦 + 𝛿𝑥𝑦

𝛼 - 𝑥 growth rate (reproduction rate)

𝛾 - 𝑦 growth rate (reproduction rate)

𝛽 - influence of 𝑦 on 𝑥

𝛿 - influence of 𝑥 on 𝑦

Lotka-Volterra model in crypto price modeling

Lotka-Volterra
model

parametrized
Lotka-Volterra

model

Neural
Network

Price
predictions
(for one or
both coins)

fitting

Lotka-Volterra model was used to model pricing mechanisms on crypto market.

Such approach in long run did not turn out very well, in short term it was slightly better, but
still not satisfactory.

Lotka-Volterra model in price mechanism modeling

What was done:

· modeling crypto prices/return rates using Lotka-Volterra model

· using such models to guide NN (only simple way of feeding model output into NN
was used)

What can be done:

· Modeling other crypto parameters, like transactions count

· Modeling market participants/groups interactions (data availibility is a challenge)

· Try different ways of incorporating LV model into NN

Another example application:
Supporting model calibration with neural networks

-30

-25

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250

Example implementations of the Wiener process

0

100

200

300

400

500

600

0 50 100 150 200 250

Example implementation of the geometric Brownian motion

As an example, let’s take Heston model, Black-Scholes model extension. There are
multiple parameters to calibrate.

Supporting model calibration with neural networks

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜈𝑡𝑆𝑡𝑑𝑊𝑡
𝑠 + 𝑒𝛼+𝛿𝜖 − 1 𝑆𝑡𝑑𝑞, St0 = S0

𝑑𝜈𝑡 = 𝜅 ҧ𝜈 − 𝜈𝑡 𝑑𝑡 + 𝛾 𝜈𝑡𝑑𝑊𝑡
𝜈, 𝜈𝑡0 = 𝜈0

𝑑𝑊𝑡
𝑠𝑑𝑊𝑡

𝜈 = 𝜌𝑑𝑡

Supporting model calibration with neural networks

Classic option quotation using Heston model looks as follows:

The calibration of this model is performed with the use of non-gradient heuristics such

as Differential Evolution or Particle Swarm Optimization.

Two bottlenecks arise - the time needed to evaluate the model in the calibration

process and the pace of the calibration itself.

Figure 1: The Heston-implied volat ility ANN.

Theforward passconsistsof t raining and predict ion, and in order to do so the

network architecture and opt imizat ion method have to be defined. Generally,

an increasing number of neurons, or a deeper st ructure, may lead to bet ter

approximat ions, but may also result in a computat ionally heavy opt imizat ion

and evaluat ion of the network. In (Liang and Srikant , 2016) it is proved that

a deep NN can approximate a funct ion for which a shallow NN may need a

very large number of neurons to reach the same accuracy. Di↵erent residual

neural networks have been t rained and tested as a validat ion of our work. They

may improve the predict ive power while using a similar number of weights as

in an MLP, but they typically take significant ly more comput ing t ime during

the t raining and test ing phases. Very deep network st ructures may reduce the

parallel efficiency, because the operat ions within a layer have to wait for the

output of previous layers. With the limitat ion of comput ing resources available,

a t rade-o↵ between ANN’s computat ion speed and approximat ion capacity may

be considered.

Many techniques have been put forward to train ANNs, especially for deep

networks. Most of theneural network training relies on gradient-based methods.

A proper random initialization may ensure the network to start with suitable

init ial weight values. Batch normalization scales the output of a layer by sub-

t ract ing the batch mean and dividing it by the batch standard deviat ion. This

can often speed up the training process. A dropout operation randomly selects

a proport ion of the neurons and deact ivates them, which forces the network to

learn more generalized features and prevents over-fit t ing. The dropout rate p

refers to the proport ion of deact ivated neurons in a layer. In the test ing phase,

in order to take into account the missing act ivat ion during t raining, each act iva-

t ion in the ent ire network is reduced by a factor p. As a consequence, the ANNs

predict ion slows down, which has been verified during experiments on GPUs.

We found that our ANNs model did not encounter over-fit t ing even when using

a zero dropout rate, as long as sufficient t raining data were provided. In our

neural network we employ the Stochast ic Gradient Descent method, as further

described in Sect ion 3.4.

10

Supporting model calibration with neural networks

To eliminate the first bottleneck, neural network can be used, mapping the model

parameters {𝜌, 𝜅, 𝜈0, ҧ𝜈, 𝛾; 𝐾, 𝜏, 𝑆0, 𝑟} to the price of an option 𝑉. The valuation

process will be as follows:

Above NN are not physically constrained in any way though.

Improving on the second bottleneck is an open problem.

Figure 1: The Heston-implied volat ility ANN.

Theforward passconsistsof t raining and predict ion, and in order to do so the

network architecture and opt imizat ion method have to be defined. Generally,

an increasing number of neurons, or a deeper st ructure, may lead to bet ter

approximat ions, but may also result in a computat ionally heavy opt imizat ion

and evaluat ion of the network. In (Liang and Srikant , 2016) it is proved that

a deep NN can approximate a funct ion for which a shallow NN may need a

very large number of neurons to reach the same accuracy. Di↵erent residual

neural networks have been t rained and tested as a validat ion of our work. They

may improve the predict ive power while using a similar number of weights as

in an MLP, but they typically take significant ly more comput ing t ime during

the t raining and test ing phases. Very deep network st ructures may reduce the

parallel efficiency, because the operat ions within a layer have to wait for the

output of previous layers. With the limitat ion of comput ing resources available,

a t rade-o↵ between ANN’s computat ion speed and approximat ion capacity may

be considered.

Many techniques have been put forward to train ANNs, especially for deep

networks. Most of theneural network training relies on gradient-based methods.

A proper random initialization may ensure the network to start with suitable

init ial weight values. Batch normalization scales the output of a layer by sub-

t ract ing the batch mean and dividing it by the batch standard deviat ion. This

can often speed up the training process. A dropout operation randomly selects

a proport ion of the neurons and deact ivates them, which forces the network to

learn more generalized features and prevents over-fit t ing. The dropout rate p

refers to the proport ion of deact ivated neurons in a layer. In the test ing phase,

in order to take into account the missing act ivat ion during t raining, each act iva-

t ion in the ent ire network is reduced by a factor p. As a consequence, the ANNs

predict ion slows down, which has been verified during experiments on GPUs.

We found that our ANNs model did not encounter over-fit t ing even when using

a zero dropout rate, as long as sufficient t raining data were provided. In our

neural network we employ the Stochast ic Gradient Descent method, as further

described in Sect ion 3.4.

10

Source: Liu, S., Borovykh, A., Grzelak, L. A., & Oosterlee, C. W. (2019). A neural network-based framework
for financial model calibration.

What else can they be used for?

· Markets synchronization (e. g. dependencies between stock, bond and
bullion markets)

· Contagion effect on the markets (e. g. spread of crisis from one
market/region to another)

· Data generation

· Model calibration

· Price discovery mechanisms

Thank you for your attention

Sources

Willard, J., Jia, X., Xu, S., Steinbach, M., & Kumar, V. (2020). Integrating physics-based modeling with machine learning:
A survey. arXiv preprint arXiv:2003.04919, 1(1), 1-34.

Robinson, H., Pawar, S., Rasheed, A., and San, O. (2022). Physics guided neural networks for modelling of non-linear
dynamics. arXiv preprint arXiv:2205.06858.

Faroughi, S. A., Pawar, N., Fernandes, C., Das, S., Kalantari, N. K., & Mahjour, S. K. (2022). Physics-Guided, Physics-
Informed, and Physics-Encoded Neural Networks in Scientific Computing. arXiv preprint arXiv:2211.07377.

Daw, A., Thomas, R. Q., Carey, C. C., Read, J. S., Appling, A. P., & Karpatne, A. (2020). Physics-guided architecture
(pga) of neural networks for quantifying uncertainty in lake temperature modeling. In Proceedings of the 2020 siam
international conference on data mining (pp. 532-540). Society for Industrial and Applied Mathematics.

Liu, S., Borovykh, A., Grzelak, L. A., & Oosterlee, C. W. (2019). A neural network-based framework for financial
model calibration. Journal of Mathematics in Industry, 9(1), 1-28.

