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People – cognitive, biodata, machine learning 
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1. fMRI

Functional magnetic resonance imaging (fMRI) is a method of studying brain 
activity based on the blood-oxygen level-dependent (BOLD) imaging.

Unlike EEG, fMRI does not directly measure brain activity, but instead it relies on 
fluctuations in the oxyganation level, blood volume, and flow.

fMRI scanner  and fMRI scan
https://www.flickr.com/photos/ja
nnem/6278833383
https://upload.wikimedia.org/wiki
pedia/commons/1/10/CFS-brain-
scan-basal-ganglia-fMRI.png 
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1.1 fMRI vs Electroencephalography (EEG)

Feature EEG fMRI

Temporal resolution (TR) High – in ms Low – between 1 and 4 
seconds on average (1.8s in 

our case)

Spatial resolution (SR) Low – in cm ^3 (cubed) High – mm ^3 voxel sizes
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1.2. How can we extract time-series from fMRI data?

Each of the voxels conveys a numeric value. While there are millions of such data 
points, we can average them based on a specific schema.

The schema that was used for the study was the Automated Anatomical Labelling 
Atlas (AAL). 

AAL divides brain into 116 anatomical regions of interest (ROIs), where each ROI 
represents a certain brain area.
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AAL ROIs 
(prefrontal.org/blog/2008/05/brain
-art-aal-patchwork)
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1.2. How can we extract time-series from fMRI data?

Having such split, we obtain a matrix of n_steps * n_ROIs. 

For instance, if we took measurements every 1.8s for 15 minutes, that would result 
in roughly 500 ((15 * 60s) / 1.8s) steps and 116 ROIs for each of the steps.

We can track and compare changes for both time, and the ROIs.
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2. Short-term (working) memory experiment

Koryna Lewandowska et al. conducted a working memory experiment in which 
participants performed four experimental tasks twice - in the morning and in the 
evening.

They were asked to memorize sets of stimuli and to respond after a while if they 
had seen a particular set or not. 

The researchers however, not only showed sets that could be easily told apart, but 
also sets that were very similar, but not the same to the previously shown 
(Lewandowska et al. 2017).
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Examples of memory sets in semantic (A,B), phonological (C,D), 
global (E,F), and local (G,H) tasks (Lewandowska et al., 2017)
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SEMantic and LOCal 
processing experiments 
(Lewandowska et al., 
2017)
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2.1 Purpose of the experiment

1. Can time of the day affect someone’s response? 

2. How will the brain react to the “lures”? (Lewandowska, 2017)
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2.2 Participants

Fifty-two paid volunteers participated in the study (38 females, age range: 20–35; 
mean ± SD: 23.96 ± 3.14 years). They were all non-smokers and drug-free, with no 
physical or psychiatric disorders.

Their sleep quality was controlled using the Pittsburgh Sleep Quality Index.

The group consisted of 18 morning-oriented and 34 evening-oriented participants, 
based on the morningness-eveningness questionnaire. 
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2.2 Results of the experiment

1. Time of the day (TOD) strongly affects individual decision bias. Responses tend to 
be more liberal in the evening than in the morning. 

2. The phenomenon is observable for all of the tasks (Lewandowska et al., 2017).
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3. fMRI signal classification study

1. What can we find in such fMRI data?

2. Can we tell those signals apart? 

3. Which ROIs are the most significant?

25/11/2021 Classification of ROI-based fMRI data 1425/11/2021 Classification of ROI-based fMRI data 14



3.1 Data split

Temporal resolution of 1.8s, 116 ROIs

1 x 116 array used with classical ML methods

6 x 116 matrix used with Neural Networks

Encoding – stage of learning

Retrieval – stage of retrieving the information

Resting state (REST) - subjects instructed to keep their eyes open, think of nothing, and not 
to fall asleep

Classification tests for both encoding and retrieval, with 2 to 5 classes (8 in total)

Random split into 90% used for training and 10% for testing
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3.2 Methods Used

Classifiers

Quadratic Discriminant Analysis (QDA) – a model which focuses on data distributions rather than 
creating conditional boundaries between the classes. It aims to find class which minimizes the 
quadratic discriminant function. It differs from LDA in that the covariance matrix need to be 
estimated separately for each class. 

Light Gradient Boosting Machine (LGBM) – boosting algorithm which creates and combines 
multiple “weak” learners to form a “strong” one. The algorithm works  by inspecting the results of 
one training phase to reduce errors in the following one. It does that by assigning more weight to 
spaces which are difficult to separate. 
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3.2 Methods Used

Fine-tuning

Optuna – hyperparameter optimisation framework. It can automatically construct 
search spaces, to improve the algoritm fit.

Optuna hyperparameter tuning example
https://optuna.readthedocs.io/en/v1.1.0/tut
orial/pruning.html 

25/11/2021 Classification of ROI-based fMRI data 17



3.3 Metrics

Precision – true positives / (true positives + false positives)

Recall – true positives / (true positives + false negatives)

F1 – 2 * (precision * recall) / precision + recall

Classifier fit time – time for the algorithm to run the hyperparameter optimization 
and converge
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3.4 Results

F1 scores for each of the tasks and algorithms tested
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3.5 Conclusions

1. It is possible to automatically differentiate between tasks using machine 
learning. Among the algorithms we have tested, best results were achieved with 
non-linear methods.

2. Some ROIs seem to be more important than others.

3. The accuracy does not necessarily decrease with classes.
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3.6 Future work

1. Predicting responders’ response errors before they occur

2. Interpreting features that were distinguished as „important” by machine learning 
algorithms

3. Exploring correlations between such features and types of tasks / responses 
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