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Gradient Optimization

We have Neural Network FΘ

We have cost function CΘ(X , y)

Θ := Θ−∇ΘCΘ
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;

Gradient Optimization

We have Neural Network (Target network) FΘ

We have Neural Network (Hyper network) Hϕ : X → θ

Weights θ(ϕ) depends on ϕ

We have cost function Cϕ(X , y)

ϕ := ϕ−∇ϕCϕ
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Image continuous reprehension

https://arxiv.org/pdf/1902.10404.pdf
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Image continuous reprehension

https://arxiv.org/pdf/2011.12026.pdf
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Hypernetwork approach to generating point clouds

https://arxiv.org/pdf/2003.00802.pdf
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Hypernetwork approach to generating point clouds

https://arxiv.org/pdf/2003.00802.pdf

https://arxiv.org/pdf/2108.01411.pdf

https://arxiv.org/pdf/2102.05973.pdf

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=9627800

https://ujchmura-my.sharepoint.com/:v:
/r/personal/przemyslaw_spurek_uj_edu_pl/Documents/
hyperflow-video.mp4?csf=1&web=1&e=GrysIB

https://arxiv.org/pdf/2110.05770.pdf
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Hypernetwork approach to regression

https://arxiv.org/pdf/2011.14620.pdf

https://github.com/maciejzieba/regressionFlow
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Few-shot learning

Figure: In a few shot-learning problems, known sets are called support sets and are
used to classify elements from query sets. In training, we have labels in support and
quarry sets. After training (in test time), our model has to correctly classify the query set
using elements from the support set.
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Few-shot learning

Figure: In a few shot-learning problems, known sets are called support sets and are
used to classify elements from query sets. In training, we have labels in support and
quarry sets. After training (in test time), our model has to correctly classify the query set
using elements from the support set.
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Few-shot learning
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MAML

The main idea of MAML is to find the parameters of a model so that it can
adapt to a new task in a few gradient steps or even a single gradient step, and
produce good results on a new task, see Fig. 21.

Figure: The MAML algorithm produces parameters θ, which can quickly adapt to many
different tasks in a few gradient steps θ∗i .
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MAML

Let
S = {(xl , yl)}L

l=1

be a support-set containing input-output pairs, with L equal to one (1-shot) or
five (5-shot), and

Q = {(xm, ym)}M
m=1

be a query-set (sometimes referred to in the literature as a target-set), with M
typically one order of magnitude greater than L. For ease of notation the
support and query sets are grouped in a task

T = {S,Q},

with the dataset
D = {Tt}N

t=1

defined as a collection of such tasks. Models are trained on random tasks
sampled from D
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MAML

In MAML, the updated parameter vector θ′i is computed using one or more
gradient descent updates on task Ti . For example, when using one gradient
update,

θ′i = θ − α∇θLTi (fθ)

The step size α may be fixed as a hyperparameter or meta learner. For
simplicity of notation, we will consider one gradient update for the rest of this
section, but using multiple gradient updates is a straightforward
extension.

The meta-optimization across tasks is performed via stochastic gradient
descent (SGD), such that the model parameters θ are updated as
follows:

θ ← θ − β∇θ
∑

Ti∼p(T )

LTi (fθ′i )

where β is the meta step size.
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MAML

Figure: The MAML algorithm produces parameters θ, which can quickly adapt to many
different tasks in a few gradient steps θ∗i .

https://arxiv.org/pdf/1703.03400.pdf
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Hypernetwork
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Hypernetwork
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HyperShot

P. Spurek Hypernetwork approach to few-shot learning January 4, 2023 19 / 34



;

HyperShot
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HyperShot
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HyperShot

WACV 2022
https://arxiv.org/pdf/2203.11378.pdf
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HyperMAML - Motivation
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HyperMAML - Motivation
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HyperMAML - in practice

Update in MAML
θ′i = θ − α∇θLSi (fθ), (1)

Update in HyperMAML

θ′ = θ +∆θ = θ + H(ES , ŶS ,YS). (2)
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HyperMAML
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Bayes By Back-propagation (BBB)

P. Spurek Hypernetwork approach to few-shot learning January 4, 2023 28 / 34



;

Bayes By Back-propagation (BBB)

In the case of Bayesian Neural networks in Bayes By Backpropagation (BBB)
we optimize the cost function

µ∗,Σ∗ = argmaxµ,σ
∑

(xi ,yi )∈Dtr

log[p(yi |xi , θ)]− KL[p(θ),p(θ0)]

where
θ ∼ N(µ,Σ), θ0 ∼ N(0, I)
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HyperBMAML

P. Spurek Hypernetwork approach to few-shot learning January 4, 2023 30 / 34



;

HyperBMAML

Hence, the variational inference along with reparametrization gradients (i.e.,
Bayes by backpropagation blundell2015weight) is typically used, and the
following objective (evidence lower bound) maximized w.r.t variational
parameters λi and ψ:

LD = Eq(θ|ψ)


N∑
i

Eq(θ′i |λi ) [log p(i |θ′i )− KL (q(θ′i |λi)|p(θ′i |θ))]︸ ︷︷ ︸
Li

− KL(q(θ|ψ)|p(θ))

where q(θ′i |λi) and q(θ|ψ) are respectively per-task posterior approximation
and approximate posterior for the universal weights. They are tied together by
the prior p(θ′i |θ).
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HyperBMAML

All these modifications simplify the optimization landscape and, taken together
along with our Hypernetwork-based adjustment strategy (details below) should
enable better optima for our objective:

Lour
D =

N∑
i

Eq(θ′i |λi (θ,§i )) [log p(i |θ′i )− γ · KL (q(θ′i |λi(θ, §i))|p(θ′i ))]

In practice, we use the standard normal priors for the weights of the neural
network f , i.e., p(θ′i ) = N (θ′i |0, I), and the hyperparameter γ allows controlling
impact of the priors and compensating for model mispecification.
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HyperBMAML
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Thank you
for your kind attention
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