
Improving batch job scheduling with AI
AIRA Seminar, 19.01.2023

Bartosz SobólHardware Acceleration
Lab

Outline

● What is batch job (scheduling)

● Heuristics-based scheduling

● AI-based schedulers

● Possible improvements

2

What is a batch job?

● In HPC, batch job is a computing task described in a form of (batch) script

○ Usually a bash script

○ Contains additional directives describing required resources

○ Setups environment (environment variables)

○ Executes commands doing actual work

● Batch jobs are submitted by users (submission/login node)

● Schedulers decide when and where (computing node) they are run

● Most common method of interacting with computing cluster

3

Heuristics-based scheduling

● Typical job lifetime

a. Submitted by user

b. Assigned priority

■ Factors: age, size, fair-share, queue,

user-controlled priority, etc.

c. Scheduled with backfilling and executed

● Priority factors can be configured and weightened

a. Lots of possible configurations, more factors increase complexity

● Job prioritization, factor selection and importance is a research topic itself

● Most popular schedulers: Slurm, PBS

4

HPC Wiki

Slurm

● Most popular job scheduler and workload

manager

○ 60% TOP500 supercomputers in 2019

● Used in all Polish scientific

supercomputers (PLGrid network)

● Complex cluster management system

with user management, accounting,

monitoring and other features

5

slurm.schedmd.com

Slurm: example

 sample_job.sh

 1 #!/bin/bash

 2 #SBATCH --nodes=1

 3 #SBATCH --ntasks=1

 4 #SBATCH --cpus-per-task=8

 5 #SBATCH --mem=16G

 6 #SBATCH --gres=gpu:1

 7 #SBATCH --time=02:00:00

 8 #SBATCH --partition=gpu-v100

 9

10 module add python

11 module add tensorflow

12

13 python actual_task.py

6

[~]$ sbatch -J test sample_job.sh

Submitted batch job 16846

[~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
16846 gpu-v100 test user PD 0:00 1 (Priority)

[~]$ sacct

JobID JobName Partition Account AllocCPUS State ExitCode
16846 test gpu-v100 testAcc 8 RUNNING 0:0

Reinforcement learning

● Agent: scheduler

● Environment: cluster, computing nodes with

resources, queues, users, jobs

● Action: decision on job execution

● Possible reward factors for scheduling

○ Job waiting time

○ Utilization of reserved resources

○ Idle resources

○ Job execution time

○ …

7

wikipedia.org

AI-supported scheduling

● Use reinforcement learning techniques

● Two approaches:

○ Standalone scheduler: Make AI-based decisions

■ Usage of more scheduling factors doesn’t multiply configurable parameters

■ Black-box scheduling

○ Additional layer on top of existing scheduler:

 Alter decisions of a classic scheduler underneath

■ Well-known haurustics part is still there

■ Can still benefit from additional factors and reinforcement learning

■ Better explainability

8

Example: DRAS (Deep Reinforcement Agent for Scheduling)

● Uses the first approach - standalone scheduler

● Takes cluster state and job queue as input

● Selects jobs to start execution

● Two neural networks

○ first select job for immediate execution, second directs backfilling

○ 22 to 162 million trainable parameters - depending on cluster size

○ convolutional and fully-connected layers

● Two RL approaches tested: policy gradient and Q-learning

● Two job trace datasets: 121K and 2.5M jobs for training and evaluation

9

Architecture

Example: DRAS (Deep Reinforcement Agent for Scheduling)

10

Example: DRAS (Deep Reinforcement Agent for Scheduling)

11

● Evaluation and results:

○ Simulated environment

○ Tested against various simple scheduling policies

○ Not evaluated against complex systems as Slurm

Example: SchedInspector

● Lives on top of existing classic scheduler

● Analyses submitted job, other jobs in queue, live cluster status and other factors

● Can reject decisions of underneath scheduler

○ e.g. delay longer job in order to run more shorter jobs

● Very simple model design - 2 MLPs with only ~2k parameters total

○ Actor-critic model

● Training:

○ Dataset: real accounting data (but from very old clusters)

○ Batches of 256 jobs

12

Example: SchedInspector

13

Architecture

Example: SchedInspector

Evaluation and results:

● Simulated simplified cluster environment

○ Assumption that runtime of the same does not change

● Tested against various simple scheduling policies

● And standard Slurm priority multifactor backfilling

● Performance measure average of (max((wj + ej)/max(ej, 10), 1) over 50 jobs -> lower is better

14

Example: SchedInspector

● As being independent from base scheduler, can be deployed gradually
(compared to DRAS)

○ For specific types of jobs, only on certain queues, etc.

○ Simpler for administrators

○ Better explainability

○ Good as a first step for adoption AI in this application

● Current evaluation methods and training datasets are not ideal

○ Architectures of HPC clusters changed a lot

● Authors plan to integrate SchedInspector with Slurm

in real-life environment

15

Possible improvements

Training and evaluation methods

● Datasets should include job traces from modern clusters

○ Different cluster architectures and node types

○ Large multi-socket nodes

○ GPUs

● More realistic environment

○ Using real cluster for training and evaluation might be impossible

○ Simulated environments can be improved

■ Introduce random variance of execution time

■ Add I/O and network bottleneck simulation

 16

Possible improvements

I/O requirements for job

● HPC systems usually use distributed filesystems (lustre) based on HDDs

○ Access to SSD drives is still limited even on newest systems

○ I/O-heavy jobs can execute many times longer if filesystem is busy

○ Often, delaying job (even for hours) can lead to lower queue+execution time

● I/O characteristics may be made a priority/scheduling factor

● How can scheduler know if jobs is I/O-heavy?

○ Additional #SBATCH-like directive limiting I/O

■ Complicated for users

○ Scheduler can learn from common jobs and filesystem characteristics

17

Possible improvements

Access to script content

● What if scheduler can read more parts of job script?

○ Software modules used

○ Commands to be executed

● Difficult to accomplish

○ Large model

○ Difficult to train for general usage

○ Privacy issues?

18

 sample_job.sh

 9

10 module add python

11 module add tensorflow

12

13 python actual_task.py

Summary

● Heuristics-based batch job scheduling methods and schedulers are used for
many years, well established and understood

● AI-based solutions are emerging

○ Can take into account more factors

○ Open possibilities to provide better fine-tuned scheduling

○ Interesting topic and ongoing research from various groups

○ Real-life evaluation is necessary

19

Bibliography

20

1. Deep Reinforcement Agent for Scheduling in HPC
Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, Michael E. Papka
https://arxiv.org/abs/2102.06243

2. SchedInspector: A Batch Job Scheduling Inspector Using Reinforcement Learning
Di Zhang, Dong Dai, Bing Xie
https://dl.acm.org/doi/abs/10.1145/3502181.3531470

3. RLScheduler: An Automated HPC Batch Job Scheduler Using Reinforcement Learning
Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, Bing Xie
https://arxiv.org/abs/1910.08925

