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Types of underlying graphs and methods
GNN Framework

Structures:1

• directed/undirected;

• homogeneous/heterogeneous (nodes and links are of the same or different
type);

• static/dynamic (fixed, evolving over time).

Loss function design:

• node-level (discrete classification of nodes or continuous assignment of
values);

• link-level (classify edge type or predict its existence);

• graph-level (classification, regression, matching).

1Classification proposed by Zhou et al., “Graph neural networks: A review of methods and applications”
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Supervision
GNN Framework

Supervision levels:

• supervised learning (labelled data);

• semi-supervised learning (a small amount of labelled nodes, a large amount
of unlabelled nodes for training)

transductive setting (predict given unlabelled nodes);
inductive setting (provide new unlabelled nodes from the same distribution to
infer);

• unsupervised setting (only unlabelled data).
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Computational modules
GNN Framework

Computational modules:

• Propagation module. Propagate information between nodes: capture
features and topological properties. Convolution operator and recurrent
operator are used to aggregate information from neighbours, skip
connection is used to gather information from historical representations
(mitigation of over-smoothing).

• Sampling module. Sampling is usually needed for large graphs.

• Pooling module. Extract more general information from high-level graphs.

AIRA Seminar August 2, 2023 5



General pipeline
GNN Framework

Figure: The general design pipeline for a GNN model. Zhou et al., “Graph neural networks: A
review of methods and applications”
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Propagation modules - convolution operator
Spectral approach

Degree matrix:

D = {dij}i,j≤N , dii = deg(i), dij = 0 for i ̸= j

Graph Laplacian and normalised graph Laplacian:

L̂ := D −A,L := IN −D− 1
2AD− 1

2

L is a real symmetric matrix, it has a complete set of orthonormal eigenvectors,
which we denote by {ul}l=1...N . Associated real-non-negative eigenvalues
{λl}l=1...N . Graph Fourier transform:

f̂(λl) :=< f, ul >=

N∑
i=1

f(i)u∗
l (i)

Factorisation L = UΛUT , where Λ is a diagonal matrix of eigenvalues.
Convolution operation:

g ⋆ x = F−1(F(g)⊙F(x)) = U(UT g ⊙ UTx)
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Communities
Visualisation

Figure: French and Dutch majorities in Belgium. Fortunato and Castellano, “Community
Structure in Graphs”
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DeepWalk
Online Learning of Social Representations

Perozzi, Al-Rfou, and Skiena, “Deepwalk: Online learning of social representations”

• Goal: embed the graph into Euclidean space.

• Based on random walks.

• Inspired by NLP (short walks as corpus, and nodes as vocabulary).

• Nodes close in the latent space have high probability to be close in the
random walks.
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Neural Overlapping Community Detection

Shchur and Günnemann, “Overlapping community detection with graph neural
networks”
Affiliation matrix F ∈ R|V |×|C|

≥0 , where C - communities. Bernoulli–Poisson (BP)
graph generating model:

Auv ∼ Bernoulli(1− exp (−FuF
T
v ))

F := GNNθ(A,X). The negative log-likelihood:

− log p(A|F ) = −
∑

(u,v)∈E

log(1− exp(−FuF
T
v )) +

∑
(u,v)/∈E

FuF
T
v

Second term has much larger contribution2. Balanced loss function:

L(F ) = −E(u,v)∼PE
(log(1− exp(−FuF

T
v ))) + E(u,v)∼PN

(FuF
T
v )

θ⋆ = argmin
θ

L(GNNθ(A,X))

2Real-world networks are usually sparse.
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Communities
Modularity

Let dv denote degree of a node v, m number of edges in the graph, and A graph’s
adjacency matrix. Modularity measures the partition of the graph into
ci, i = 1 . . . k communities.

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(ci, cj),

where δ(ci, cj) is a binary indicator variable. In the matrix form, C ∈ M({0, 1})n,k

- cluster assignment, B := A− ddT

2m , where d - degree vector:

Q =
1

2m
Tr(CTBC)

Relaxed, spectral version, computed efficiently: C ∈ M(R)n,k. Computation:

Bx = Ax− dTxd

2m
.
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GNN construction
Google Research team

Model introduced in Müller, “Graph clustering with graph neural networks”:

• Transductive GNN that outputs a single embedding per node.

• Start with X0 ∈ Rn×s - initial node features.

• Â = D− 1
2AD− 1

2 - normalised adjacency matrix.

• output of the t-th layer:

Xt+1 = SeLU(ÂXtW +XWskip).

SeLU(x) =

{
λx, x > 0,

λα(ex − 1), x ≤ 0,
(1)

where λ = 1.05070098, α = 1.67326324.
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DMoN
Deep Modularity Networks

1. Encode cluster assignments:

C = softmax(GCN(Â, X))

softmax : RK ∋ z −→ ezi∑K
j=1 e

zj
∈ (0, 1)K

2. Loss function based on spectral modularity maximisation and regularisation
(prevent trivial solutions)

LDMoN(C,A) = − 1

2m
Tr(CTBC)︸ ︷︷ ︸

modularity

+

√
k

n
∥
∑
i

CT
i ∥F − 1︸ ︷︷ ︸

collapse regularisation

∥ · ∥F is the Frobenius norm3.

3∥A∥F =
√∑

i,j |aij |2 =
√

tr(A∗A).
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Modularity problem
Problem with a loss function based only on the modularity criterion

Problem: spectral clustering for modularity objective has
spurious minima - assignment all nodes to the same cluster.
Bianchi, Grattarola, and Alippi, “Spectral clustering with
graph neural networks for graph pooling” suggested
MinCutPool. Regularisation was based on the
soft-orthogonal regularisation ∥CTC − I∥F .
• Overly restrictive in combination with softmax class
assignment.

• Regularisation dominates the clustering term (worse
than random).

DMoN:

• normalised to range [0,
√
k] (0 when perfectly

balanced,
√
k when all clusters are of size 1)

• applied dropout in GNN before the softmax
(prevention of local optima).
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Graph autoencoder
Encoding gPool

Gao and Ji, “Graph u-nets”
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Graph autoencoder
Decoding gUnpool
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Graph autoencoder
g-U-Nets framework
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Ride-pooling

Ride-pooling:

• Sharing a ride with different passengers;

• discomfort caused by delay (detour & waiting time);

• compensation with lower fare (sharing discount).

Benefits:

• reduced vehicle mileage (environment);

• decrease in fleet size (operator, city (congestion reduction));

• lower costs (users).

Two algorithmic stages:

• determining the set of the feasible rides;

• matching (finding optimal solution).
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Ride-pooling
Determining the set of feasible rides

Presented algorithmic steps are according to the ExMAS algorithm4.
Ride comprising travellers T1, . . . , Tn is considered feasible if it is attractive for all
of T1, . . . , Tn.
Utility formulas (traveller specific):

Uns
i = ρli + βtti

Us
i,rk

= (1− λ)ρli + βtβs(t̂i + βdt̂
p
i ),

(2)

• ρ - price ($/km);

• λ - sharing discount;

• li - trip length;

• βt - value of time;

• βs - sharing discomfort;

• βd - delay sensitivity;

• ti, t̂i - travel time with the non-shared ride and shared rides, respectively;

• t̂pi - pick-up delay.
4Kucharski and Cats, “Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations”.
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Potential shared rides
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Graph representation
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Frame Title
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Benchmarks

Graph partition Objective
Isolated nodes 124k
No partition 84.8k

Random partition (3) 110 - 120k
Classic algorithms 89.7 - 110k

Our 94.4k
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New Method

• If u travels with v, v travels with u;

• u and v can only travel together if assigned to the same cluster;

• edge weight suv = tnsu + tnsv − ts{u,v};

• pv = (p1v, . . . , p
k
v) = (P (v ∈ c1), . . . , P (v ∈ ck));

• denote ruv attractiveness of matching u to v (in [0, 1]), for example starting
from σ(suv);

• edge uv attractiveness quv = ruvrvu;

• Puv =
∑

c∈C pcup
c
v;

• probability that u travels with q define as wuv = Puv ∗ quv;
• loss function:∑

u∈V

[
∑

v∈N(u)

wuvsuv + (1−
∑

v∈N(u)

wuv)suu] + λ(
∑
c∈C

|c| log2 |c|)α
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Current problems

• In reality, ride-pooling scheme admits high order rides (more than 2 travellers).
Hyper-graphs, heterogeneous, bipartite representation

• Finding optimal representation, node and edge features.

• Structuring architecture.
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