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Machine Learning is not enough!

e ML acts on observation.
o No ML today can answer such questions about interventions not encountered before.

e ML (mainly) focuses on statistical relations (correlation) between variables.
o It need to consider causal relations in data.

e ML can’t take human like decisions as systems get more autonomous

o Combination of ML and symbolic collaboration of data and model is needed.



Human Intelligence

“‘Humans have the ability to

(1) choreograph a mental
representation of their
environment,

(2) interrogate that representation,

(3) distort it by mental acts of
imagination and

(4) finally answer ‘What if?" kind of

questions.”
Judea Pearl, 2018




Learning from imagination?

e In fiction »! BILL MURRAY AMNDIE MACDOWELL

o  Groundhog day
m Philis trapped in a time loop
m He experience different outcomes of his actions during
a day.
e In reality
o We observe
m | took aspirin two hours ago, my headache has
passed.
o  We can not observe
m the case | didn’t take an aspirin. What would happen?




Causal inference

Inferring the effects of any treatment/policy/intervention/etc.




Why do we need causal inference?

How effective is a given treatment in preventing a disease?

Did the new tax law cause our sales to go up, or was it our advertising campaign?
What is the health-care cost attributable to obesity?

Can hiring records prove an employer is guilty of a policy of sex discrimination?

| am about to quit my job, should I?

Pearl & Mackenzie. The book of why. 2019



Causal Hierarchy

Level

Association

Intervention

Counterfactuals

Typical Activity

Seeing

Doing
Intervening

Imagining,
Retrospection

Typical Questions

What is?
How would seeing X
changes my belief in Y?

What if?
What if | do X?

Why?

Was it X that caused Y?
What if | had acted
differently?

Examples

What does a symptom tell me about a
disease?

What does a survey tell us about the
election results?

What if | take aspirin, will my
headache be cured?

What if we ban cigarettes?

What happens if we double the price?

Was it the aspirin that stopped my
headache?

Would Kennedy be alive had Oswald
not shot him?

What if | had not been smoking the
past 2 years?



Correlation does not imply causation!



Correlation is not causation!

Swimming pool drownings
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Simpson’s Paradox - Ex 1

New disease: COVID
Treatment T: A(0) and B(1)
Condition C: mild (0) or severe (1)

Outcome Y: alive(0) or dead(1)

Condition
Mild Severe
g A 15% 30%
= (210/1400) (30/100)
= B 10% 20%

(5/50) (100/500)

E[Y|T, C=0] E[Y|T, C=1]

Total

16%
(240/1500)

19%
(105/550)

E[Y[T]

1400/1500(0.15) +
100/1500(0.30) = 0.16

50/550(0.10) +
500/550(0.20) = 0.19



Salary

Simpson's paradox - Ex 2
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Causality and ML

What do you think is the causal relation between X1 and X2?

X2

X1->X2
Or
X2->X1

X1




Causality and ML

Do you think our conclusion is correct if | tell you?

e X2:room temperature foom
e X1: radiator temperature temperature

A

Outdoor
temperature

s

Room Radiator temperature
temperature

, Radiator temperature



Causality and ML

Build a better predictor by using only variable X2

Causal feature selection, Guyon et. al.



What does imply causation?



Potential outcome

Inferring the effect of treatment/policy on some outcome

Example:
do(T' = 1) — Yi|gor=1) = Yi(1)

e T: observed treatment

o T=1, T=0 — taking a pill, not taking a pill
e i individual / sample
e Y:observed outcome

o Y;(l) -> potential outcome of taking the pill




Causal effect

Individual treatment effect (ITE):

Yi(1) = Yi(0)

2-2

Headache
Yes Pill Headache gon

ITE= 1-1

22

Headache

No Pill Headache a little better

Yi(1) | Yi(0)
Person 1 1 0
Person 2 0 1
Person 3 1 1
Person 4 0 0
Person 5 0 0
Person 6 0 1
Person 7 0 1
Person 8 1 1
Person 9 1 0
Person 10 1 0




Fundamental problem of causal
inference

One outcome is factual and the other is
counterfactual

Individual treatment effect (ITE):

Yi(1) = Yi(0) =7

vi(1) | Yi(0)
Person 1 ? 0
Person 2 0 ?
Person 3 1 ?
Person 4 ? 0
Person 5 ? 0
Person 6 ? 1
Person 7 0 ?
Person 8 1 ?
Person 9 1 ?
Person 10 ? 0




Average treatment effect

Average treatment effect (ATE):
E[Yi(1)

- Yi(0)] =E[Y(1)] -

AE[Y|T =1] —

E[Y(0)]

E[Y|T =

0]

Person 1

Person 2

Person 3

Person 4

Person 5

Person 6

Person 7

Person 8

Person 9

Person 10



Average treatment effect Gonfounding association

Average treatment effect (ATE): /\

E[Yi(1) — Yi(0)] = E[Y'(1)] — E[Y'(0)]
LE[Y|T =1 —E[Y|T = 0]

—-
Causal association



Randomised control trials (RCTs)

Treatment groups or control groups are
selected randomly

E[Yi(1) — Yi(0)] = E[Y'(1)] — E[Y'(0)]
—E[Y|T = 1] — E[Y|T

2 2
= o R
olo . & lﬁ“ %
T e R
P ! 2 2 7

0]

—-
Causal association



How can we discover causal relations?

Correlation:

©)

©)

It is raining -> people probably carry open umbrellas

People carry open umbrellas -> It is probably raining

Intervention:

@)

@)

Will it rain if we ban umbrella?

Would it have rained if we had banned umbrellas?

Randomized trials

@)

@)

@)

Randomly split people in two groups
Force one group to carry the umbrella and force another group not to carry.

Measure the correlation of the rain

Observational data only

O

Selection on existing data

Not enough

Too difficult

Sometimes
impractical




How to measure causal effect in observational studies?

If the Treatment is not assigned randomly, we
need to adjust / control for confounders (W).

ot -
W is a sufficient adjustment set, if we have: /
Y(0),Y(1) L T|W]

—

then,

Causal association

EY ()W =w] =E[Y|do(T =t),W = w] = E[Y|t, w]
E[Y ()] = E[Y|do(T =t)] = EwE[Y|t, W]

Unconfoundedness Assumption



Backdoor adjustment

What are the minimum
nodes that we need block
(condition for) to remove all
confounding associations
between treatment and
outcome.

Causal association



Backdoor adjustment

What are the minimum e G
nodes that we need block

(condition for) to remove all Q e ° e
confounding associations

between treatment and

oo Fa

Causal association Causal association




Simpson’s Paradox - Ex 1

E[Y|do(T =
e A

(D)

£

3

- B

t)] = EcE[Y]t,C] = ZE Y|t, ] P(c)
Condition
Mild Severe Total Causal
15% 30% 16% 19 4% 1450/2050(0.15) +
(210/1400) (30/100) (240/1500) e 600/2050(0.30) ~= 0.19
10% 20% 19% 12.9% 1450/2050(0.10) +
(5/50) (100/500) (105/550) e 600/2050(0.20) ~= 0.12

E[Y|T, C=0] E[Y|T, C=1] E[Y|T] E[Y|do(t)]



Regression adjustment and unconfoundedness

Identifying ATE: E[Y (1) — Y(0)] = Ew[E[Y|T = 1, W] — E[Y|T = 0, W]|

. . 1 1
Estimation: — > _[E[Y|T = 1,u] ~ E[Y|T = 0,u]] = — > E[ (1)[w] — E[Y (0)]w]
Model: Predicting subset of Y from W
on particular treatment group

Linear regression:  fix)(w) = Bpw

Estimation of ATE: % > (i (wi) = fuoy(wi)) = By = 5(0)% > wi = (B = Bo)W
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Causal graphical models



Holmes is told that the burglary alarm in
his house is gone of.

He rushes into his car and heads for home.

On his way, the radio reports a small
earthquake.

He knows that earthquake has tendency to

turn the burglar alarm on.

He returns to his work leaving his ;';7,4«"
neighbors the pIeasures of the nouse




Earthquake

Burglary



BAYESIAN NETWORKS



Bayesian network representation

Directed acyclic graph (DAG)

Nodes: variables
Edges: interactions

Indicate “direct influence” between variables
Formally: encode conditional independence
For now: imagine that arrows mean direct noisy
causation (in general, they are not causal!)

Encodes joint distribution

Set of conditional probability tables for each node in
the graph

35



How to construct a Bayesian Network?

Expert determines nodes and links

36



How to construct a Bayesian Network?

Expert determines nodes and links
Estimating the network from the data:
Score-based learning

(1) defines a criterion to evaluate how well the Bayesian network fits the data,
then (2) searches over the space of DAGs for a structure achieving the maximal
score.

Bayesian scoring functions, e.g. BD (Bayesian Dirichlet) (1995), K2 (1992)

Information-theoretic scoring functions, e.g. LL (Log-likelihood) (1912-22),
MDL/BIC (Minimum description length/Bayesian Information Criterion)
(1978), MIT (Mutual Information Tests) (2006)

37



How to construct a Bayesian Network?

Expert determines nodes and links
Estimating the network from the data:
Score-based learning

constraint-based learning

employs the independence test to identify a set of edge constraints

for the graph and then finds the best DAG that satisfies the
constraints

PC algorithm (2000), FCI (2001), ...

38



Independence

Two variables are independent if:

Va,y . P(xz,y) = P(xz)P(y)

Another form: Vz,y : P(z|y) = P(x)

We write:

X1Y

P(X)

> P(Y)




Conditional Independence

X is conditionally independent of Y given Z

if and only if:
Vo,y,z 1 P(x,ylz) = P(x[2) P(y|2)

or, equivalently, if and only if

Vr,y,z . P(z|z,y) = P(z|2) P(Y)

P(Z)
We write X 1Y|Z

P(X) <




Causal networks

Bayesian networks are usually used to represent causal relationships. This is, however,
not strictly necessary: a directed edge from node i to node j does not require that X. is
causally dependent on XJ..

This is demonstrated by the fact that many causal mechanism construct the same
distributions

z = randn()
y =z + 1+ sqgrt(3)*randn()
X=z

+ 2*randn()

x = randn() y=1
x = (y-1)/4 + sqrt(3)*randn()/2

y =x+ 1+ sqrt(3)*randn()

1
A v o v & o

!
LA b o v & o o

L b o v & o

41
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Cause and Effect

particular independent variable (the cause) has an effect on the dependent
variable of interest (the effect)

A variable X is said to be a cause of a variable Y if Y can change in response
to changes in X.

Y =1 (X, noise)

o g n—— 42



Causal Model (Pearl et al.)

Set of variables X1, . .. ,Xn on a directed acyclic graph G.
e Arrows = direct causal links (come from either the expert or the data)
X = f(Parents of x, Noise)

Parents (causes) of x

e Implies p(X1, ... ,Xn) with particular
conditional independence structure:

Descendants

P(X|Parents of X)
o Causal MarkOV COndition: Non-descendants

X independent of non-descendants,

given parents
P(x|PA,, non — decendents) = P(x|PA;)



d-separation

If sets of variables X and Y are d-separated by a set Z in the DAG G, then Xand Y
are conditionally independent conditional on Z.

DAG d-separation [ Set of Independencies }

44



d-separation

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths
between (any node in) X and (any node in) Y are blocked by Z.

Information flow

-

Fork Collider

45



d-separation example |

- What is the
d-separation set
between T and Y?

46



d-separation example Il

- What is the
d-separation set
between T and Y?

47



Markov equivalent classes

Graphs with same skeleton and same conditional independence.

E.g. X; 1L X3|X, and X; /L X3

They can not being distinguished only by looking at conditional independence.

48



Markov equivalent classes

Graphs with same skeleton and same conditional independence.

Collider case X; /L X3|X, and X; 1L Xj

49



Markov equivalent classes, e.qg.

Markov equivalence class

How to create graphs in a same Markov equivalent class?



Construct Causal Network from data - PC algorithm

Performing condition independence test on different subset variables to
calculate the causal directions:

DAGs
—P Xo—P
X1 2 X3 PC Algorithm Set of Independencies

X1 44— Xy &— X,




Construct Causal Network from data - PC algorithm

Performing condition independence test on different subset variables to
calculate the causal directions:

X1 and X3 are independent, they
become dependent given X2

X1 is independent of X3 given X2

52



Construct Causal Network from data - PC assumptions

e Markov assumption
o Avariable is independent of non-descendants, given its parents
e Faithfulness
o Two path between two variable should not cancel out each other effects
e Causal sufficiency
o There are no unobserved confounders of any of the variables in the graph
e Acyclicity

o There are no cycles in the graph

53



Causal graph from observational data

PC algorithm: conditional independence based algorithm

&P 223 233

Initialize with a fully Step1: An edge a-b is deleted if
connected un-oriented graph alblc

Step 2: Orient edges in “collider”
triplets

Step 3: Further orient edges with a
constraint-propagation

54



PC - Step 1: Identifying the skeleton

Start with complete undirected graph and remove edges X — Y where X 1. Y|Zfor
some (potentially empty) conditioning set Z, starting with the empty conditioning
set and increasing the size.

X 1L Y|{C}, where X,Y € {A,B,D, E}

Ground Truth Step 1 A 1L B{}
55



PC - Step 2: Identifying the colliders ° G

Now for any paths X — Z —Y in our working graph where a

the following are true:

1.  We discovered that there is no edge between X and Y ° e
in our previous step. Ground Truth

2. Z was not in the conditioning set that makes X and Y
conditionally independent

Then, we know X —Z —Y forms a collider ° e

(o
A L BI{}
AJ;KLLZI{C} ° e



PC - Step 3: Orienting remaining edges

Idea: use fact that we discovered all colliders

Any edge Z-Y part of a partially directed path of the form X->Z-Y, where there is no
edge connecting X and Y can be oriented as Z->Y

Ground Truth
57



Removing some assumptions

e No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)
e No assumed acyclicity: CCD algorithm (Richardson, 1996)

e Neither causal sufficiency nor acyclicity: SAT-based causal discovery
(Hyttinen et al., 2013; 2014)

58



Challenges of conditional-based causal discovery

e Independence-based causal discovery algorithms rely on accurate conditional
independence testing.

o Conditional independence testing is simple if we have infinite data.

o However, it is a quite hard problem with finite data, and it can sometimes require a lot of data
to get accurate test results (Shah & Peters, 2020).

e Markov equivalence class is hard to interpret
e Causal graphs are not robust to input data, noise, and outliers

e In many real world application, the true causal graph is not known

59



Causal discovery in real world setting

Causal relation between vehicle speed and selected gear

Vehicle Speed
Selected Gear
Vehicle Speed

Time stamp Time stamp Selected Gear

Gear O » () Vehicle

Speed

e on cmemom enas e -
27 | o oo caman am -—— en e 81 !
an oo cman am  omen o -
o | e- on cmans e -—-— .- - i
81 e oo cman o -—am an e 1
o - en cmes cm - .- -
oo o cmamom enen e -
< - - o- oe o o - en e 2
om om cenam oo emomn an o .
o~ - o o ) ) |
& o ° ° B ; ‘ ‘
o an -. cm——— ———— - - l ’
. N A b
T T T T T T T T r T T T T r T T
1.014e+11 1.016e+11 1.018e+11 1.020e+11 1.022e+11 1.014e+11 1.016e+11 1.018e+11 1.020e+11 1.022e+11 i 4 6 8 10 12
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Causal discovery in real world setting

e 06 busses, 11 signals
e latent variables: “idle run” and “model year”

RelSp"ﬂLeft Ambien\.’-upemture
) O Ca(’ﬂz '
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J/
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Steers lAngle
RelSp tRight
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F a
RelS tieft s ‘
Amblewg’npemture - 3
ey c\ ed

Acceler.f&fli’_os

Without categorical variables With categorical variables



Causal discovery is still worthwhile

Get insight about the cause

If we do inference
If we ask the proper counterfactual question
Evaluate the results based on “usefulness”

Calculate causal effect




Inference

Given a network describing P(X1, X, , X,,), what is P(z;|x;, xx)?

‘ Burning Regimen v Filter state Waste type

stavle M =s00%| | intactc [  9s.00% industrial [l 2857%

Unstable | 15.00% | | Defect | 5.00% Household W  71.43%
[i#l [0 =] | _ o g

¥

P /
///
/ -
v & A v
CO2 concentration Filter efficiency / Metals in waste
Mean -1.85 | l Mean -3.25 / Mean -0.214
Variance 0.258 Variance 0.503 / Variance 0211
(1] [ [=] | £ §ilfe)
NV ¥ v
Light penetrability Dust emission Metals emission
Mean 148( | |_ Mean 304 ]| _ Mean 2.82
Variance 0.398 : Variance 0.593 Variance 074

i) (3 = o i [0



Inference

We can do intervention on a node, e.g. calculating P(y|do(t))

- Bayesian Factorization: P(x,t,y) = P(X)P(t|x)P(y|x,t)
- Because of intervention on t, P(t|x)=1

P(x.yldo(t)) = P(x)P(y|xt)

- Marginalization: P(Y]do(t) ZP P(yle,1)

64



Correlation vs. Causation

{ FORGET DIETING =
12 WE'RE MOVING TO
COLORADO!

Sy F

| ’ A NEW STUDY FOUND

COLORADO HAS
J/ THE LOWEST
OBESITY LEVEL OF
' ANY STATE,

O 2008 by NELA Inc e Cormes GO

© NEA. Inc
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Complementary materials

An Introduction to Causal Inference, Richard Scheines
https://www.cmu.edu/dietrich/philosophy/docs/scheines/introtocausalinference.pdf

Structure learning for Bayesian networks
https://ermongroup.qgithub.io/cs228-notes/learning/structure/



https://www.cmu.edu/dietrich/philosophy/docs/scheines/introtocausalinference.pdf
https://ermongroup.github.io/cs228-notes/learning/structure/

Other Causal Discovery
Approaches



Issues with Independence-Based Causal Discovery

e Requires @ @J %@ @\@)@
faithfulness @ @

assumption

conditional

independence tests | = o D@ D @g@ @j’)
e Only identifies the

O
Markov &) &

@g@ @ ® 07 @v@ @ @

e Large samples can

be necessary for @ & @) & ®
g O g

equivalence class @E—W @?} 0 @?’) @—®
Y o %




Can we do better than Markov equivalence class?

If we have multinomial distributions (Meek, 1995) or linear Gaussian
structural equations X, = f;(PA;, N;)(Geiger & Pearl, 1988), we can only
identify a graph up to its Markov equivalence class.

- What about non-Gaussian structural equations?

- Or nonlinear structural equations?



Two Variable Case

Is the causal direction from X to Y or the reverse?
- There exist functions, fx and fysuch that:
- Y = fy(X,Uy), X 1L Uy
- X = fx(Y,Ux),Y iR UX

X, Y, Ux , Uy are real-valued random variables

Note: Without extra assumptions about the
parametric form, we can not recognise the
direction.



LInear Non-Gaussian Qm”rm@



Linear Non-Gaussian Assumption

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class
in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise is non-Gaussian”?

Linear Non-Gaussian Assumption:
All structural equations (causal mechanisms that generate the data) are of the following form:
Y=1fX)+U

where f is a linear function, X is independent of U, and U is distributed as some non-Gaussian



Linear Non-Gaussian Assumption

Theorem (Shimizu et al., 20006):
In the linear non-Gaussian setting,
- if it exists the following function
Y=fX)+UX 1L U

- then, it does not exist the following relation on the reverse direction
X=9gY)+U, Y I U



Example of Linear Non-Gaussian Setting




Example of Linear Non-Gaussian Setting

15.0
4 1 12.5
10.0
2 4
75
3
E 0 > 50 s
o
- 25 1
0.0
1 -25
-3 ey 0 1 2 3 4 5 2 0 1
X residual



LINGAM algorithm

Linear, Non-Gaussian, Acyclic causal Models based on purely observational,
continuous-valued data. Assumptions are

(a) there are no hidden confounders
(b) the error terms are non-gaussian.

Under these conditions it can be shown that the full generating model can be
identified in the limit of an infinite sample.

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLRO6.pdf



https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf

LinGAM algorithm

1. The observed variables xi, i €{1,...,m} can be arranged in a causal order,
such that no later variable causes any earlier variable.

2. The value assigned to each variable xi is a linear function of the values
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term ei,
and plus an optional constant term ci.

3. The disturbances ei are all continuous-valued random variables with
non-Gaussian distributions of non-zero variances, and the ei are
independent of each other. - -

_ O
X perm Il X perm +€ perm
|ldea: Find a permutation of variables that sort

them based on causal order v

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf



https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf
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Box plots of the SHD between the estimated structure (either DAG or CPDAG)
and the correct DAG for p = 4 and n = 100 for linear non-Gaussian SEMs (top).
The SID is computed between the correct DAG and the estimated DAG (bottom).
Some methods estimate only the Markov equivalence class. We then compute the
SID to the “best” and to the “worst” DAG within the equivalence class; therefore
a lower and an upper bound are shown.

https://imlr.ora/papers/volume15/peters14a/peters14a.pdf



https://jmlr.org/papers/volume15/peters14a/peters14a.pdf

Nonlinear hddtive: Noise: Setting



Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?
Nonlinear additive noise assumption:

Y = f(X) + U, X 1L Uwhere fis a nonlinear function.

Theorem (Hoyer et al. 2008): Under the Markov assumption, causal sufficiency,
acyclicity, the nonlinear additive noise assumption, and a technical condition from
Hoyer et al. (2008), we can identify the causal graph.



Nonlinear Additive Noise Setting

Algorithm:
1. test whether x and y are statistically independent.
2. If not, calculate a model Y = f(X)+U , e.g. using a nonlinear regression of y on x.

3. calculating the corresponding residuals U =Y - f(X), and testing whether U is
independent of X. If yes, there is a causal link from X to Y, otherwise there is no
link in this direction.

4. then, similarly test whether the reverse model X = g(Y)+U'’ fits the data.

https://proceedings.neurips.cc/paper files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf



https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf

Abalone dataset

30 20
S 02 : e
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Figure 4: Abalone data: (a) forward fit corresponding to “age (rings) causes length”; (b) residuals for

forward fit; (c) backward fit corresponding to “length causes age (rings)”; (d) residuals for backward
fit.

https://proceedings.neurips.cc/paper files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf



https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf
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Coffee -> Nobel Prize: Dependent residuals (p-value of 5.1*107-78)
Nobel Prize -> Coffee: Dependent residuals (p-value of 3.1*10”-12)



Cause-Effect Pairs

- For each pair of variables (Xi,Yi), the two possible additive noise models are
tested that correspond with the two different possible causal directions, Xi —
Yiand Yi — Xi.

- For both directions, the functional relationship are estimated by performing
regression. The goodness-of-fit is then evaluated by testing independence of
the residuals and the inputs.

- then, the pairs are ranked according to the highest of the two p-values of the
pair.

- In this way, the trade off is created between accuracy, i.e., percentage of
correct decisions, versus the amount of decisions taken.

https://imlr.ora/papers/volume15/peters14a/peters14a.pdf



https://jmlr.org/papers/volume15/peters14a/peters14a.pdf

Summary of ideas for causal discovery from observational
data

X1 AL X3
Xo 1L X3

|dea 1: independence-based methods

X1 L Xa[{X3}
X1 L Xo | {X3}
Xo AL X3 | {X1}

|dea 2: additive noise
X1 = f((X3)+ M
Xo = N>
Xz = f(Xz) + N3
X = fa( X2, X3) + Na



Causal Distovery from Infevrventions



Causal discovery from intervention: two variable case
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Causal discovery from intervention: two variable case

Intervention on X; X =12 Interventionon Y:Y =12

Intervention on Y

=
@

=
g
o

1.6 18 120 122 124
Intervention on X




Causal discovery from intervention

e \We can alway find underlying causal graph using series of interventions on

skeleton:
o Eberhardt et al. (2005) found that [log2(n)] + 1 multi-node interventions are necessary for
finding causal graph in worst case scenario (complete graph).

e Intervention can be structural or parametric:
o E.g. Y=noise or Y=f(PA, N) -> Y=g(PA, N)



Cau%\i’r\; N Time series



Estimating the causal generating
processes for time series is not
close to solved

Any of the methods described
previously can be used on time
series. But their accuracies are
sensitive to all of the factors just
mentioned.

RIRY - TE7 . SERCREY - SENCREY < . TR T



Causality in time series is challenging

Finding the causal dynamics is challenging because:

- the generating process may be non-linear

- the data acquisition rate may be much slower than the underlying rate of
changes

- there may be measurement error

- the system may be non-stationary

- there may be unmeasured confounding causes



X Granger-causes Y

Granger causality ; r T
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Granger defined the causality relationship based on two principles:

e The cause happens prior to its effect.
e The cause has unique information about the future values of its effect.



Granger causality

A signal X is said to Granger-cause Y if the future realizations of Y can be better
explained using the past information from X and Y rather than Y alone.

Definition X does not Granger-cause Y relative to side information Z if and only if
R(Y;f-i-l | Xtayta Zt) — ,R’(Y;H-l | th Zt)

Standard Granger-causality tests assume a functional form in the relationship
among the causes and effects and are implemented by fitting autoregressive
models.



Granger causality

Consider the linear vector-autoregressive (VAR) equations (Wiener 1956;
Granger 1969):

k
Yt)=a+ Y BaY(t—At)+e, (4.1)
At=1
k k
Y(t)=a+ Y BaY(t—At)+ Y FaX(t— At) + &, (4.2)
At=1 At=1

k is the number of lags considered.

X does not G-cause Y if and only if the prediction errors of X in the restricted Eq.
(4.1)and unrestricted regression models Eq. (4.2) are equal (i.e., they are
statistically indistinguishable).



Challenges of Granger causality

A Causality gf:ﬂﬁ; Example

Granger causality XY =bZ X—=>Y X(t)=ext)

excludes Y>2Z Y(f) = 0.3Y(t-1)+X(t-1)+£y(t)
indirect causes X =Z X Z Z(t) = 0.4Z(t-1)+Y(t-1)+£4(1)
B Failure Modes of Granger causality
Ground Granger
Modes truth causality Example
deterministic = X(t) = Y(t-1) X(t) = X(t-2)
system XEY X Y yy=xt1) [T V(o) = Y(t-2)
e AWK X(t) = ex(t) Z(t) = 0.4Z(t-1)+Y(t-1)
i ::.;T:geuds g o ’:,ﬂ\ N\ Y > 2Z V(1) = 0.3Y(t1)+X(t1)+5y(8) 0.3Y(t-2)-£y(t-1)
unobserved Z . Z(t) = 0.4Z(t-1)+X(t-2)+£(1) +e4(t)
observed
1 sample/1 time step 1 sample/10 time steps
... infrequent X(f) = 0.4X(t-1) X(t) = 0.0001X(t-10)
l gampling XY X Y +0.6Y(t-1)+£x(1) +0.005Y(t-10)+1.431Bx(f)
Y(f) = 0.5Y(t-1)+£y(f)] | Y(f) = 0.001Y(t-10)+1.1558({)
Cov(Bx(t), By(t)) = 0.303
XZZ2Y See Newbold (1978), Int. Econ. Rev.
iv mea:gi’::‘e"' X<=Y or  and Nalatore et al. (2007), Phys. Rev. E

X —>Y AlsoseeFigure7
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Imagine we have a dataset with the altitude and the average annual
temperature from different cities in a country. So we have the joint probability

p(a,t).
T—A? p(a,t) = p(alt)p(t)? Or,

A—T? p(at)=p(tla)p(a)?

Intervention 1: elevate all the cities in our
dataset. What is the effect on the average annual
temperature?

Intervention 2: change the city’s temperature
using a giant air conditioner. What is the effect on
altitude?

Peters, et al. Elements of causal inference: foundations and learning algorithms (2017)



e Instead of thinking about this data coming from a single country, let's now
imagine we have different datasets coming from two countries. E.g. Brazil and

Germany
e Shouldn’t the relationship between altitude and temperature be equal no

matter where we measure it? ~
This is an invariance under different countries

In another word, if we get causal
inference correctly, we can reuse the
same relationship learned for Brazil to
Germany.




Independent Causal Mechanisms (ICM) Principle

The causal generative process of a system’s variables is composed of
autonomous modules that do not inform or influence each other.

e In the probabilistic case, this means that the conditional distribution of each
variable given its causes (i.e., its mechanism) does not inform or influence the
other mechanisms.

E.g. In our altitude and temperature example: p(t|]a) and p(a) are “independent”.

Causality for Machine Learning, https://arxiv.org/pdf/1911.10500.pdf



Independent Causal Mechanisms (ICM) Principle

Applied to the causal factorization, the principle tells us that the factors should be
“‘independent” in the sense that:

e Changing (or intervening upon) one mechanism p(X;|PA;) does not
change the other mechanisms p(X;|PA;) (i # j)

e Knowing some other mechanisms p(X;|PA;) (¢ # j)does not give us
information about a mechanism p(X,;|PA;)



Independent Causal Mechanisms (ICM) Principle

Consider a Markov factorization with respect to causal DAG:

d
p(zla <. 7Xd) — Hp(xl|$pa(@))

1=1
Modularity suggests:

P(T1|Tpary), - - - » P(Td|Tpa(ay) are independent.



Independent Causal Mechanisms (ICM) Principle

This principle subsumes several notions important to causality, including separate
intervenability of causal variables, modularity and autonomy of subsystems,
entanglement, and invariance.

Note:

The dependence of two mechanisms p(X:|PA4;)and p(X;|PA;) does not coincide
with the statistical dependence of the random variables X; and X;. Indeed, in a
causal graph, many of the random variables will be dependent even if all the
mechanisms are independent.



Semi-supervised learning

Small portion of data is labeled + lots of unlabeled data.

We need some information in p(x) that improves p(y|x).

1 /
—— Supervised algorithm decision boundary
---- Optimal decision boundary

>
T i
v ".

v
N

oo |

(a) Smoothness and low-density assumptions.

(b) Manifold assumption



Semi-supervised learning

According to Modularity assumption:
(71| Zpa(r))s - - > P(Td| Tpa(ay) are independent.
Special case for two variables:

e p(cause), p(effect|cause) are independent.
e p(effect), p(causeleffect) are not independent.



Semi-supervised learning

Semi-supervised learning from cause to effect does not work!

p(x,y) = p(x)p(y|x) or p(cause), p(effect|cause) ®_®

The ICM Principle posits that the modules in a joint distribution causal
decomposition do not inform or influence each other. This means that in particular,
p(x) (unlabelled data) should contain no additional information about p(y|x).



Semi-supervised learning

What about the opposite direction?
Does semi-supervised learning work
when we are predicting cause from the
effect (anti-causal direction)?

60 .
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) — error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

On Causal and Anti-causal Learning, https://icml.cc/2012/papers/625.pdf



Domain adaptation

We are looking for invariant predictor trained on source domains for classifying
animals in the target domain:

Source domain 1 Source domain 2 Target domain

i&g | : [ }({Zﬂﬁj — MODEL — Polar Bear

Cow?

Classifier



Domain adaptation

Domain adaptation is the ability to apply an
algorithm trained in one or more "source
domains" to a different (but related) "target
domain®.

e Often there is not enough data in target
domain to train from scratch.

A domain shift is a change in the data
distribution between source and target
datasets.

Source 1

Before
Adaptation

After
Adaptation



Domain adaptation % *""l
: ¥ ST cow

Causal direction:

So when things like domain shift happen, it becomes just a matter of a different
input distribution to our invariant mechanism. Independent causal mechanism can

stay invariant under different conditions.

Anti-causal direction:

let's say P(Cause|Effect), then a domain shift (P(Effect) change) is going to also
change the learnt mechanism.



Reinforcement Learning

The machine is given feedback concerning the decision it makes, but no
information about possible alternatives




Reinforcement learning

e Given a sequence of states and actions with (delayed) rewards, output a
policy

o Policy is a mapping from states -> actions that tells you what to do in a given state

State
//\ e Receive feedback in the form of
rewards.
Action e Agent’s utility is defined by the
Agent > Environment reward function.

e Must (learn to) act so as to
maximize expected rewards.

’\_/

Reward



Reinforcement learning

State
Kidney stone example: /

Given the condition of kidney stone (S),
a treatment (T) will be selected in a way
that it n%/aximises the probability of

recovery (R). \

_ Maximising reward
Action

What would happen if ....? We want to
intervene in the treatment.

A
Sy
p(t,r,s) = p(s) p(tls) p(rls.t)

Intervene on
treatment p*(t|s)



Take home messages!

Knowledge can be decomposed in informationally independent pieces
(mechanisms, modules)

Semi-supervised learning from cause to effect does not work!

Invariant models for domain adaptation, multi-task learning, transfer
learning can be readily achieved when the causal conditional probability has
been learned.

Reinforcement learning is closer to causality research than the machine
learning mainstream in that it sometimes effectively directly estimates
do-probabilities.



Can Causality siNe ope
oriblems of ML?
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Can we answer counterfactual questions based
on observations only?



Many meaning full image properties are correlated.
e Elephant often has a green background.
e what if the background of an elephant was a city?



Answering counterfactual questions

Deep generative models have proven
successful at designing realistic
images

Counterfactuals uncover the modular
structure of deep generative models

Providing a disentangle latent
re p resen tatl on Of th e d ata u SI n g Michel Besserve'-?, Arash Mehrjou'~, Rémy Sun'-*, Bernhard Scholkopf®
Generative models o FT o mloaled Cilormett TH b, (oo

3. Dep. for Computer Science, ETH Ziirich, Switzerland.
4. ENS Rennes, France.

https://arxiv.org/pdf/1812.03253.pdf



Answering counterfactual questions

e Independent causal
mechanism

O

Uncover a modular structure by
manipulating latent
representation in a way that
changing one module doesn’t
change other modules

E.g. change smile of a person

Statistical independence
Latent representation =
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Figure 2: (a) Ilustration of the generative mapping and a disentangled transformation. (b) Causal
graph of an example CGM showing different types of independence between nodes. (¢) Commutative
diagram showing sparse transformation 7" in latent space associated to a disentangled transformation
T'. (d) Nlustration of intrinsic disentanglement with £ = {2}.

(d)

https://arxiv.org/pdf/1812.03253.pdf



Answering counterfactual questions

Generated image using causal disentanglement.

e Completely Unsupervised

https://arxiv.org/pdf/1812.03253.pdf



2

Can we learn independent causal mechanism
automatically?



Human intelligence

Humans are able to recognize objects such as
handwritten digits based on distorted inputs.

They can correctly label translated, corrupted, or
inverted digits, without having to relearn them from
scratch.

The same applies for new objects, essentially after
having seen them once.




Automatic data-driven algorithms

Unsupervised transformation of digits by learning independent causal mechanism

The approach is based on a set of experts that compete for data generated by the
mechanisms.

Learning Independent Causal Mechanisms

Giambattista Parascandolo ' > Niki Kilbertus'* Mateo Rojas-Carulla'® Bernhard Schilkopf '

3T/ Tsh 47 P e s 4'9-/"%
375421312 1619]2(al/1a|6]7



https://arxiv.org/pdf/1712.00961.pdf

Automatic data-driven algorithms

The architecture using competing experts that automatically 7 oo
specialize on different image transformations
e Each example is fed to all experts independently and in S + €N>
parallel.
e Comparing the outputs of all experts and selecting the g [ 5 [5
winning expert canonical ' | '
e Weights of winning expert is updated and other experts stay = l
unchanged. (The motivation behind competitively updating 7 Fana—
only the winning expert is to enforce specialization) (!0 (!1 (!L '
L |
I
argmax

Figure 2. We show how a transformed example, here a noisy digit.
is processed by a competition of experts. Only Expert 3 is spe-
cializing on denoising, it wins the example and gets trained on it,
whereas the others perform translations and are not updated.


https://arxiv.org/pdf/1712.00961.pdf

3

Can we perform domain adaptation using causal
relation?



Improving domain adaptation

Standard feature selection methods rely only
on predictive power

Selecting invariant features for source and
target domains

Domain Invariant features found leveraging
causal information

Domain Adaptation by Using Causal Inference to
Predict Invariant Conditional Distributions

Thijs van Ommen
University of Amsterdam
thijsvanommen@gmail.com

Sara Magliacane
IBM Research”
sara.magliacane@gmail .com

Tom Claassen Stephan Bongers Philip Versteeg
Radboud University Nijmegen  University of Amsterdam University of Amsterdam
tomc@cs.ru.nl srbongers@gmail.com P-j-j-p.versteeg@uva.nl

Joris M. Mooij
University of Amsterdam
j-m.mooij@uva.nl

https://arxiv.org/pdf/1707.06422.pdf



Improving domain adaptation

Intervention causing distribution shift

o

X
3

(b) No distribution shift for {X;}: (c) Strong distribution shift for {X3}:
(u)CaUsalgruph ?()'].\'1.('1 :'”:?(‘ .\'].('1: l) ::() .\'g.('] :”)7?().\-;('1 = l)

Predict Y from only features that make
Y and C1 independent

Ci LY |A[9] https://arxiv.org/pdf/1707.06422.pdf



4

Can we increase robustness and security of
Machine Learning algorithms?



TOWARDS THE FIRST ADVERSARIALLY ROBUST

Increasing robustness & security REEEAT. RERTORE MO G MNIST

Lukas Schott'*, Jonas Rauber'=*, Matthias Bethge'~*! & Wieland Brendel'-!

Dee p neu ral N etWO rkS (D N N S) are ! Centre for Integrative Neuroscience, University of Tiibingen

ZInternational Max Planck Research School for Intelligent Systems

Susce ptl ble to m | n | mal ad Ve rsa rlal ‘Bernstein Center for Computational Neuroscience Tiibingen
. *Max Planck Institute for Biological Cybernetics
pe rtu rbatlons *Joint first authors

Joint senior authors

Using causality for creating
adversarially robust NNs

https://arxiv.org/pdf/1805.09190.pdf



Increasing robustness & security

Machine Learning can benefit from causal and anticausal knowing structure /
prediction tasks.

e Using Bayes’ rule to solve causal problem rather than anticausal.

L. Optimize latent distribution p{z{x) in each digit model IL. Decide based on most likely class
to find hkelhood of sampile x under each model.

- ix LOGITS piclass | x)
r—.é &  —— [ Generator, | — [ - oo — ] — 08
Sample x z,

JU0s DO

e

https://arxiv.org/pdf/1805.09190.pdf



