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Rapid development of AI and 
autonomous systems toward 

human intelligence



Machine Learning is good at ….



Machine Learning is not enough!

● ML acts on observation. 

○ No ML today can answer such questions about interventions not encountered before.

● ML (mainly) focuses on statistical relations (correlation) between variables.

○ It need to consider causal relations in data.

● ML can’t take human like decisions as systems get more autonomous 

○ Combination of ML and symbolic collaboration of data and model is needed.



Human Intelligence

“Humans have the ability to 
(1) choreograph a mental 

representation of their 
environment, 

(2) interrogate that representation, 
(3) distort it by mental acts of 

imagination and 
(4) finally answer ‘What if?’ kind of 

questions.” 
Judea Pearl, 2018

 



Learning from imagination?

● In fiction 
○ Groundhog day

■ Phil is trapped in a time loop
■ He experience different outcomes of his actions during 

a day. 
● In reality

○ We observe 
■ I took aspirin two hours ago, my headache has 

passed.
○ We can not observe

■ the case I didn’t take an aspirin. What would happen?



Causal inference

Inferring the effects of any treatment/policy/intervention/etc.



Why do we need causal inference?

How effective is a given treatment in preventing a disease? 

Did the new tax law cause our sales to go up, or was it our advertising campaign? 

What is the health-care cost attributable to obesity? 

Can hiring records prove an employer is guilty of a policy of sex discrimination?

I am about to quit my job, should I?

Pearl & Mackenzie. The book of why. 2019



Causal Hierarchy
Level Typical Activity Typical Questions Examples

Association Seeing What is?
How would seeing X 
changes my belief in Y?

What does a symptom tell me about a 
disease?
What does a survey tell us about the 
election results?

Intervention Doing 
Intervening

What if?
What if I do X?

What if I take aspirin, will my 
headache be cured?
What if we ban cigarettes?
What happens if we double the price?

Counterfactuals Imagining, 
Retrospection

Why?
Was it X that caused Y?
What if I had acted 
differently? 

Was it the aspirin that stopped my 
headache?
Would Kennedy be alive had Oswald 
not shot him?
What if I had not been smoking the 
past 2 years?



Correlation does not imply causation!



Correlation is not causation!



Simpson’s Paradox - Ex 1
New disease: COVID

Treatment T: A(0) and B(1)

Condition C: mild (0) or severe (1)

Outcome Y: alive(0) or dead(1)

Mild Severe Total

A 15%
(210/1400)

30%
(30/100)

16%
(240/1500)

1400/1500(0.15) + 
100/1500(0.30) = 0.16

B 10%
(5/50)

20%
(100/500)

19%
(105/550)

50/550(0.10) + 
500/550(0.20) = 0.19

𝔼[Y|T, C=0] 𝔼[Y|T, C=1] 𝔼[Y|T]
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Simpson's paradox - Ex 2



Causality and ML

What do you think is the causal relation between X1 and X2?

X2

X1

X1->X2
Or 
X2->X1



Causality and ML

Do you think our conclusion is correct if I tell you?

● X2: room temperature
● X1: radiator temperature

Room 
temperature

Radiator temperature

Room 
temperature

Radiator temperature

Outdoor 
temperature



Causality and ML

Build a better predictor by using only variable X2

Causal feature selection, Guyon et. al.



What does imply causation?



Potential outcome

Inferring the effect of treatment/policy on some outcome

Example:

● T: observed treatment 
○ T=1, T=0 → taking a pill, not taking a pill

● i: individual / sample
● Y: observed outcome

○         -> potential outcome of taking the pill



Causal effect

Individual treatment effect (ITE): 
Person 1 1 0

Person 2 0 1

Person 3 1 1

Person 4 0 0

Person 5 0 0

Person 6 0 1

Person 7 0 1

Person 8 1 1

Person 9 1 0

Person 10 1 0



Fundamental problem of causal 
inference
One outcome is factual and the other is 
counterfactual

Individual treatment effect (ITE):

Person 1 ? 0

Person 2 0 ?

Person 3 1 ?

Person 4 ? 0

Person 5 ? 0

Person 6 ? 1

Person 7 0 ?

Person 8 1 ?

Person 9 1 ?

Person 10 ? 0



Average treatment effect

Average treatment effect (ATE):

Person 1 ? 0

Person 2 0 ?

Person 3 1 ?

Person 4 ? 0

Person 5 ? 0

Person 6 ? 1

Person 7 0 ?

Person 8 1 ?

Person 9 1 ?

Person 10 ? 0



Average treatment effect

Average treatment effect (ATE):
C

YT

Causal association

Confounding association



Randomised control trials (RCTs) 

Treatment groups or control groups are 
selected randomly 

C

YT

Causal association



How can we discover causal relations?

● Correlation:
○ It is raining -> people probably carry open umbrellas

○ People carry open umbrellas -> It is probably raining

● Intervention:
○ Will it rain if we ban umbrella?

○ Would it have rained if we had banned umbrellas?

● Randomized trials
○ Randomly split people in two groups

○ Force one group to carry the umbrella and force another group not to carry.

○ Measure the correlation of the rain

● Observational data only

○ Selection on existing data

Not enough

Too difficult 

Sometimes 
impractical



How to measure causal effect in observational studies?

If the Treatment is not assigned randomly, we 
need to adjust / control for confounders (W).

W is a sufficient adjustment set, if we have:

then,

C

YT

Confounding association

Causal association

Unconfoundedness Assumption



Backdoor adjustment

C

YT

Causal association

M

D

E

F

What are the minimum 
nodes that we need block 
(condition for) to remove all 
confounding associations 
between treatment and 
outcome.



Backdoor adjustment

C

YT

Causal association

M

D

E

F

What are the minimum 
nodes that we need block 
(condition for) to remove all 
confounding associations 
between treatment and 
outcome.

C

YT

Causal association

M

D

E

F



Simpson’s Paradox - Ex 1

Mild Severe Total Causal

A 15%
(210/1400)

30%
(30/100)

16%
(240/1500) 19.4% 1450/2050(0.15) + 

600/2050(0.30) ~= 0.19

B 10%
(5/50)

20%
(100/500)

19%
(105/550) 12.9% 1450/2050(0.10) + 

600/2050(0.20) ~= 0.12

𝔼[Y|T, C=0] 𝔼[Y|T, C=1] 𝔼[Y|T] 𝔼[Y|do(t)]
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C
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Regression adjustment and unconfoundedness

Identifying ATE:  

Estimation: 

Model: Predicting subset of Y from W 
on particular treatment group

Linear regression:  

Estimation of ATE: 





Causal graphical models



Holmes is told that the burglary alarm in 

his house is gone of.

He rushes into his car and heads for home. 

On his way, the radio reports a small 

earthquake.

He knows that earthquake has tendency to 

turn the burglar alarm on.

He returns to his work leaving his 

neighbors the pleasures of the noise.

Example by Pearl and Jensen



Burglary

Alarm 
Sounds

Earthquake

Radio 

report



BAYESIAN NETWORKS

34



Bayesian network representation

Directed acyclic graph (DAG)

 Nodes: variables 
 Edges: interactions

 Indicate “direct influence” between variables
 Formally: encode conditional independence
 For now: imagine that arrows mean direct noisy 

causation (in general, they are not causal!)

Encodes joint distribution

 Set of conditional probability tables for each node in 
the graph

35
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How to construct a Bayesian Network?

 Expert determines nodes and links

36



How to construct a Bayesian Network?

 Expert determines nodes and links
 Estimating the network from the data:

 Score-based learning
 (1) defines a criterion to evaluate how well the Bayesian network fits the data, 

then (2) searches over the space of DAGs for a structure achieving the maximal 
score. 

 Bayesian scoring functions, e.g. BD (Bayesian Dirichlet) (1995), K2 (1992)
 Information-theoretic scoring functions, e.g. LL (Log-likelihood) (1912-22), 

MDL/BIC (Minimum description length/Bayesian Information Criterion) 
(1978), MIT (Mutual Information Tests) (2006)

37



How to construct a Bayesian Network?

 Expert determines nodes and links

 Estimating the network from the data:

 Score-based learning

 constraint-based learning

 employs the independence test to identify a set of edge constraints 
for the graph and then finds the best DAG that satisfies the 
constraints

 PC algorithm (2000), FCI (2001), …

38

 



Independence
 Two variables are independent if:

 Another form:

 We write: 

P(X)
P(Y)



Conditional Independence
 X is conditionally independent of Y given Z

      if and only if:

      or, equivalently, if and only if

 We write

P(X)

P(Y)

P(Z)



Causal networks
Bayesian networks are usually used to represent causal relationships. This is, however, 
not strictly necessary: a directed edge from node i to node j does not require that Xi is 
causally dependent on Xj.

 This is demonstrated by the fact that many causal mechanism construct the same 
distributions

41



Cause and Effect
particular independent variable (the cause) has an effect on the dependent 
variable of interest (the effect)

 A variable X is said to be a cause of a variable Y if Y can change in response 
to changes in X. 

 Y = f (X, noise)

42



Causal Model (Pearl et al.)

● Set of variables X1, . . . ,Xn on a directed acyclic graph G.
● Arrows = direct causal links (come from either the expert or the data)
● X = f(Parents of x, Noise)

● Implies p(X1, . . . ,Xn) with particular
       conditional independence structure:

● Causal Markov condition:

X independent of non-descendants, 
given parents

P(X|Parents of X)



d-separation 

If sets of variables X and Y are d-separated by a set Z in the DAG G, then X and Y 
are conditionally independent conditional on Z.

44



d-separation

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths 
between (any node in) X and (any node in) Y are blocked by Z.

X1 X2 X3 X1

X2

X3

X1

X2

X3

Chain Fork Collider

Information flow

45



d-separation example I

- What is the 
d-separation set 
between T and Y? 

X2

X3X1

T M1 M2 Y

W1
W3

W2

46



d-separation  example II

- What is the 
d-separation set 
between T and Y? 

X1

T Y

W1

X2

47



Markov equivalent classes

Graphs with same skeleton and same conditional independence. 

E.g.                           and  

They can not being distinguished only by looking at conditional independence.

X1 X2 X3

X1 X2 X3

X1 X2 X3

48



Markov equivalent classes

Graphs with same skeleton and same conditional independence. 

Collider case                      and  

X1 X2 X3

49



a

b c

d

a

b c

d

a

b c

d

a

b c

d

Markov equivalent classes, e.g.

Markov equivalence class

How to create graphs in a same Markov equivalent class?



Construct Causal Network from data - PC algorithm

Performing condition independence test on different subset variables to 
calculate the causal directions:

51



Construct Causal Network from data - PC algorithm

Performing condition independence test on different subset variables to 
calculate the causal directions:

X1 is independent of X3 given X2 X1 and X3 are independent, they 
become dependent given X2

X1 X2 X3

X1 X2 X3

X1 X2 X3

X1 X2 X3

52



Construct Causal Network from data - PC assumptions 

● Markov assumption

○ A variable is independent of non-descendants, given its parents

● Faithfulness

○ Two path between two variable should not cancel out each other effects

● Causal sufficiency

○ There are no unobserved confounders of any of the variables in the graph

● Acyclicity

○ There are no cycles in the graph

53



Causal graph from observational data

PC algorithm: conditional independence based algorithm

1

2

3

4

5

6

Initialize with a fully 
connected un-oriented graph

1

2

3

4

5

6

Step1: An edge a-b  is deleted if 
a⊥b|c 

1

2

3

4

5

6

Step 2: Orient edges in “collider” 
triplets 

1

2

3

4

5

6

Step 3: Further orient edges with a 
constraint-propagation 54



PC - Step 1: Identifying the skeleton

Start with complete undirected graph and remove edges X – Y where              for 
some (potentially empty) conditioning set Z, starting with the empty conditioning 
set and increasing the size.
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C

D E

A B

C

D E

Ground Truth Step 1

A B

C

D E

A B

C

D E



PC - Step 2: Identifying the colliders

Now for any paths X – Z – Y in our working graph where 
the following are true:

1. We discovered that there is no edge between X and Y 
in our previous step.

2. Z was not in the conditioning set that makes X and Y 
conditionally independent

Then, we know X – Z – Y forms a collider

56

A B

C

D E

Ground Truth

A B

C

D E

A B

C

D E



PC - Step 3: Orienting remaining edges

Idea: use fact that we discovered all colliders

Any edge Z-Y part of a partially directed path of the form X->Z-Y, where there is no 
edge connecting X and Y can be oriented as Z->Y

57
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C

D E



Removing some assumptions

● No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)

● No assumed acyclicity: CCD algorithm (Richardson, 1996)

● Neither causal sufficiency nor acyclicity: SAT-based causal discovery 
(Hyttinen et al., 2013; 2014)

58



Challenges of conditional-based causal discovery

● Independence-based causal discovery algorithms rely on accurate conditional 
independence testing. 

○ Conditional independence testing is simple if we have infinite data. 

○ However, it is a quite hard problem with finite data, and it can sometimes require a lot of data 
to get accurate test results (Shah & Peters, 2020).

● Markov equivalence class is hard to interpret

● Causal graphs are not robust to input data, noise, and outliers

● In many real world application, the true causal graph is not known

59



Causal discovery in real world setting

Causal relation between vehicle speed and selected gear

Ve
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cl
e 
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ed
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Time stamp Time stamp

Gear Vehicle 
Speed

Ve
hi

cl
e 

S
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ed

Selected Gear
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Causal discovery in real world setting
● 6 busses , 11 signals
● latent variables: “idle run” and “model year”

Without categorical variables With categorical variables



Causal discovery is still worthwhile

Get insight about the cause

● If we do inference

● If we ask the proper counterfactual question

● Evaluate the results based on “usefulness”

● Calculate causal effect

62



Inference

Given a network describing                       , what is                   ?

63



Inference

We can do intervention on a node, e.g. calculating P(y|do(t))

- Bayesian Factorization: P(x,t,y) = P(x)P(t|x)P(y|x,t)
- Because of intervention on t, P(t|x)=1

P(x,y|do(t)) = P(x)P(y|x,t)

- Marginalization: 

64

X

T Y



Correlation vs. Causation

65



Complementary materials

An Introduction to  Causal Inference, Richard Scheines 
https://www.cmu.edu/dietrich/philosophy/docs/scheines/introtocausalinference.pdf

Structure learning for Bayesian networks 
https://ermongroup.github.io/cs228-notes/learning/structure/

https://www.cmu.edu/dietrich/philosophy/docs/scheines/introtocausalinference.pdf
https://ermongroup.github.io/cs228-notes/learning/structure/


Other Causal Discovery 
Approaches



Issues with Independence-Based Causal Discovery

● Requires 
faithfulness 
assumption

● Large samples can 
be necessary for 
conditional 
independence tests

● Only identifies the 
Markov 
equivalence class



Can we do better than Markov equivalence class? 

If we have multinomial distributions (Meek, 1995) or linear Gaussian 
structural equations                               (Geiger & Pearl, 1988), we can only 
identify a graph up to its Markov equivalence class.

- What about non-Gaussian structural equations?

- Or nonlinear structural equations?



Two Variable Case

- There exist functions,     and     such that:
-

-

- X, Y,      ,      are real-valued random variables

X Y
?

X Y
Note: Without extra assumptions about the 
parametric form, we can not recognise the 
direction. 

Is the causal direction from X to Y or the reverse?



Linear Non-Gaussian Setting



Linear Non-Gaussian Assumption

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class 
in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise is non-Gaussian?

Linear Non-Gaussian Assumption:

All structural equations (causal mechanisms that generate the data) are of the following form:

     Y = f(X) + U

where f is a linear function, X is independent of U, and U is distributed as some non-Gaussian



Linear Non-Gaussian Assumption

Theorem (Shimizu et al., 2006): 

In the linear non-Gaussian setting, 

- if it exists the following function

- then, it does not exist the following relation on the reverse direction



Example of Linear Non-Gaussian Setting

?



Example of Linear Non-Gaussian Setting



LiNGAM algorithm

Linear, Non-Gaussian, Acyclic causal Models based on purely observational, 
continuous-valued data. Assumptions are 

(a) there are no hidden confounders

(b) the error terms are non-gaussian.

Under these conditions it can be shown that the full generating model can be 
identified in the limit of an infinite sample.

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf 

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf


LinGAM algorithm

1. The observed variables xi, i ∈{1,...,m} can be arranged in a causal order, 
such that no later variable causes any earlier variable.

2. The value assigned to each variable xi is a linear function of the values 
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term ei, 
and plus an optional constant term ci.

3. The disturbances ei are all continuous-valued random variables with 
non-Gaussian distributions of non-zero variances, and the ei are 
independent of each other.

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf 

Idea: Find a permutation of variables that sort 
them based on causal order

https://www.cs.helsinki.fi/group/neuroinf/lingam/JMLR06.pdf


Which one is better?

https://jmlr.org/papers/volume15/peters14a/peters14a.pdf 

https://jmlr.org/papers/volume15/peters14a/peters14a.pdf


Nonlinear Additive Noise Setting



Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov 
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988). 

What if the structural equations are nonlinear?

Nonlinear additive noise assumption:

                                          where f is a nonlinear function.

Theorem (Hoyer et al. 2008): Under the Markov assumption, causal sufficiency, 
acyclicity, the nonlinear additive noise assumption, and a technical condition from 
Hoyer et al. (2008), we can identify the causal graph.



Nonlinear Additive Noise Setting

Algorithm:

1. test whether x and y are statistically independent.

2. If not, calculate a model Y = f(X)+U , e.g. using a nonlinear regression of y on x.

3. calculating the corresponding residuals U = Y − f(X), and testing whether U is 
independent of X. If yes, there is a causal link from X to Y, otherwise there is no 
link in this direction.

4. then, similarly test whether the reverse model X = g(Y)+U’ fits the data.

https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf 

https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf


Abalone dataset

https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf 

https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf




Correlation: 0.698

Coffee -> Nobel Prize: Dependent residuals (p-value of 5.1*10^-78)
Nobel Prize -> Coffee: Dependent residuals (p-value of 3.1*10^-12)



Cause-Effect Pairs

- For each pair of variables (Xi,Yi), the two possible additive noise models are 
tested that correspond with the two different possible causal directions, Xi → 
Yi and Yi → Xi. 

- For both directions, the functional relationship are estimated by performing 
regression. The goodness-of-fit is then evaluated by testing independence of 
the residuals and the inputs. 

- then, the pairs are ranked according to the highest of the two p-values of the 
pair. 

- In this way, the trade off is created between accuracy, i.e., percentage of 
correct decisions, versus the amount of decisions taken.

https://jmlr.org/papers/volume15/peters14a/peters14a.pdf 

https://jmlr.org/papers/volume15/peters14a/peters14a.pdf


Summary of ideas for causal discovery from observational 
data

Idea 1: independence-based methods 

Idea 2: additive noise



Causal Discovery from Interventions



Causal discovery from intervention: two variable case

X Y
?

Intervention on X: X = 12 

X Y
?

Intervention on Y: Y = 12 

X Y
?



Causal discovery from intervention: two variable case

X Y
?

Intervention on X: X = 12 

X Y

Intervention on Y: Y = 12 

X Y



Causal discovery from intervention

● We can alway find underlying causal graph using series of interventions on 
skeleton:

○ Eberhardt et al. (2005) found that                      multi-node interventions are necessary for 
finding causal graph in worst case scenario (complete graph).

● Intervention can be structural or parametric:
○ E.g. Y=noise or Y=f(PA, N) -> Y=g(PA, N)



Causality in Time series



Estimating the causal generating 
processes for time series is not 
close to solved

Any of the methods described 
previously can be used on time 
series. But their accuracies are 
sensitive to all of the factors just 
mentioned.



Causality in time series is challenging 

Finding the causal dynamics is challenging because:

- the generating process may be non-linear
- the data acquisition rate may be much slower than the underlying rate of 

changes
- there may be measurement error
- the system may be non-stationary 
- there may be unmeasured confounding causes 



Granger causality 

Does X causes Y or Y causes X? 

Granger defined the causality relationship based on two principles:

● The cause happens prior to its effect.
● The cause has unique information about the future values of its effect.

X Granger-causes Y



Granger causality

A signal X is said to Granger-cause Y if the future realizations of Y can be better 
explained using the past information from X and Y rather than Y alone.

Standard Granger-causality tests assume a functional form in the relationship 
among the causes and effects and are implemented by fitting autoregressive 
models.



Granger causality

Consider the linear vector-autoregressive (VAR) equations (Wiener 1956; 
Granger 1969):

k is the number of lags considered.

X does not G-cause Y if and only if the prediction errors of X in the restricted Eq. 
(4.1)and unrestricted regression models Eq. (4.2) are equal (i.e., they are 
statistically indistinguishable).



Challenges of Granger causality





What is the connection 
between causality and 
ML?

Sepideh Pashami - 20230508



Imagine we have a dataset with the altitude and the average annual 
temperature from different cities in a country. So we have the joint probability 
p(a,t).

T→A?      p(a,t) = p(a|t)p(t)?   Or,

A → T?    p(a,t) = p(t|a)p(a)? 

Intervention 1: elevate all the cities in our 
dataset. What is the effect on the average annual 
temperature?

Intervention 2: change the city’s temperature 
using a giant air conditioner. What is the effect on 
altitude?

Peters, et al. Elements of causal inference: foundations and learning algorithms (2017)



● Instead of thinking about this data coming from a single country, let’s now 
imagine we have different datasets coming from two countries. E.g. Brazil and 
Germany

● Shouldn’t the relationship between altitude and temperature be equal no 
matter where we measure it? 

This is an invariance under different countries

In another word, if we get causal 
inference correctly, we can reuse the 
same relationship learned for Brazil to 
Germany.



Independent Causal Mechanisms (ICM) Principle

The causal generative process of a system’s variables is composed of 
autonomous modules that do not inform or influence each other.

● In the probabilistic case, this means that the conditional distribution of each 
variable given its causes (i.e., its mechanism) does not inform or influence the 
other mechanisms.

Causality for Machine Learning, https://arxiv.org/pdf/1911.10500.pdf

E.g. In our altitude and temperature example: p(t|a) and p(a) are “independent”.



Independent Causal Mechanisms (ICM) Principle

Applied to the causal factorization, the principle tells us that the factors should be 
“independent” in the sense that:

● Changing (or intervening upon) one mechanism                       does not 
change the other mechanisms                        

● Knowing some other mechanisms                                   does not give us 
information about a mechanism 



Independent Causal Mechanisms (ICM) Principle

Consider a Markov factorization with respect to causal DAG:

Modularity suggests:

                                               are independent.



Independent Causal Mechanisms (ICM) Principle

This principle subsumes several notions important to causality, including separate 
intervenability of causal variables, modularity and autonomy of subsystems, 
entanglement, and invariance.

Note:

The dependence of two mechanisms                and                does not coincide 
with the statistical dependence of the random variables     and    . Indeed, in a 
causal graph, many of the random variables will be dependent even if all the 
mechanisms are independent.



Semi-supervised learning

Small portion of data is labeled + lots of unlabeled data.

- We need some information in p(x) that improves p(y|x).



Semi-supervised learning

According to Modularity assumption:

                                               are independent.

Special case for two variables:

● p(cause), p(effect|cause) are independent.
● p(effect), p(cause|effect) are not independent.



Semi-supervised learning

Semi-supervised learning from cause to effect does not work!

p(x,y) = p(x)p(y|x)   or    p(cause), p(effect|cause) 

The ICM Principle posits that the modules in a joint distribution causal 
decomposition do not inform or influence each other. This means that in particular, 
p(x) (unlabelled data) should contain no additional information about p(y|x).

X Y



Semi-supervised learning

What about the opposite direction? 
Does semi-supervised learning work 
when we are predicting cause from the 
effect (anti-causal direction)? 

On Causal and Anti-causal Learning, https://icml.cc/2012/papers/625.pdf



Domain adaptation

We are looking for invariant predictor trained on source domains for classifying 
animals in the target domain: 

Source domain 1          Source domain 2 Target domain



Domain adaptation

Domain adaptation is the ability to apply an 
algorithm trained in one or more "source 
domains" to a different (but related) "target 
domain". 

● Often there is not enough data in target 
domain to train from scratch.

A domain shift is a change in the data 
distribution between source and target 
datasets.

Source 1

Target

Source 2 Before 
Adaptation

After 
Adaptation



Domain adaptation

Causal direction:

So when things like domain shift happen, it becomes just a matter of a different 
input distribution to our invariant mechanism. Independent causal mechanism can 
stay invariant under different conditions.

Anti-causal direction:

let’s say  P(Cause|Effect), then a domain shift (P(Effect) change) is going to also 
change the learnt mechanism.



Reinforcement Learning

The machine is given feedback concerning the decision it makes, but no 
information about possible alternatives



Reinforcement learning

● Given a sequence of states and actions with (delayed) rewards, output a 
policy

○ Policy is a mapping from states -> actions that tells you what to do in a given state

Agent Environment
Action

Reward

State

● Receive feedback in the form of 
rewards. 

● Agent’s utility is defined by the 
reward function. 

● Must (learn to) act so as to 
maximize expected rewards.



Reinforcement learning

Kidney stone example:

Given the condition of kidney stone (S), 
a treatment (T) will be selected in a way 
that it maximises the probability of 
recovery (R).

What would happen if ….? We want to 
intervene in the treatment.

S

T R

p(t,r,s) = p(s) p(t|s) p(r|s,t)

Intervene on 
treatment p*(t|s)

State

Action
Maximising reward



Take home messages!

● Knowledge can be decomposed in informationally independent pieces 
(mechanisms, modules)

● Semi-supervised learning from cause to effect does not work!

● Invariant models for domain adaptation, multi-task learning, transfer 
learning can be readily achieved when the causal conditional probability has 
been learned.

● Reinforcement learning is closer to causality research than the machine 
learning mainstream in that it sometimes effectively directly estimates 
do-probabilities. 



Can Causality solve open 
problems of ML?



Can we answer counterfactual questions based 
on observations only?

1



Many meaning full image properties are correlated. 
● Elephant often has a green background.
● what if the background of an elephant was a city? 

?



Answering counterfactual questions

● Deep generative models have proven 
successful at designing realistic 
images

● Providing a disentangle latent 
representation of the data using 
Generative models 

https://arxiv.org/pdf/1812.03253.pdf



Answering counterfactual questions

● Independent causal 
mechanism

○ Uncover a modular structure by 
manipulating latent 
representation in a way that 
changing one module doesn’t 
change other modules

○ E.g. change smile of a person

https://arxiv.org/pdf/1812.03253.pdf



Answering counterfactual questions

Generated image using causal disentanglement.

● Completely Unsupervised

https://arxiv.org/pdf/1812.03253.pdf



Can we learn independent causal mechanism 
automatically?

2



Human intelligence 

Humans are able to recognize objects such as 
handwritten digits based on distorted inputs.

They can correctly label translated, corrupted, or 
inverted digits, without having to relearn them from 
scratch. 

The same applies for new objects, essentially after 
having seen them once.



Automatic data-driven algorithms

Unsupervised transformation of digits by learning independent causal mechanism

The approach is based on a set of experts that compete for data generated by the 
mechanisms.

https://arxiv.org/pdf/1712.00961.pdf

https://arxiv.org/pdf/1712.00961.pdf


Automatic data-driven algorithms

The architecture using competing experts that automatically 
specialize on different image transformations

● Each example is fed to all experts independently and in 
parallel.

● Comparing the outputs of all experts and selecting the 
winning expert

● Weights of winning expert is updated and other experts stay 
unchanged. (The motivation behind competitively updating 
only the winning expert is to enforce specialization)

https://arxiv.org/pdf/1712.00961.pdf

https://arxiv.org/pdf/1712.00961.pdf


Can we perform domain adaptation using causal 
relation?

3



Improving domain adaptation

Standard feature selection methods rely only 
on predictive power

Selecting invariant features for source and 
target domains

Domain Invariant features found leveraging 
causal information 

https://arxiv.org/pdf/1707.06422.pdf



Improving domain adaptation
Intervention causing distribution shift

https://arxiv.org/pdf/1707.06422.pdf

Predict Y from only features that make 
Y and C1 independent



Can we increase robustness and security of 
Machine Learning algorithms?

4



Increasing robustness & security

Deep neural networks (DNNs) are 
susceptible to minimal adversarial 
perturbations

Using causality for creating 
adversarially robust NNs

https://arxiv.org/pdf/1805.09190.pdf



Increasing robustness & security

Machine Learning can benefit from causal and anticausal knowing structure / 
prediction tasks.

● Using Bayes’ rule to solve causal problem rather than anticausal.

https://arxiv.org/pdf/1805.09190.pdf


