R ..hL,
@)
_....ﬂ.. (Q\]
o
B ® 5
I I R I~ R E 121
I ©
N & I
I (S
L &
B G
S I N IR I <2 N
I o
I A b 11

Domain Adaptation

for






Why Transfer?

e To avoid building a model from scratch
O  Time consuming to train a model
e o reuse existing knowledge

O  Not to develop a model for each conditions

e To deal with a new system or a new configuration
O Avoid collecting a lot of new data
e To preserve privacy

O  Share models rather than the data



Transfer Learning

The ability of a system to recognise and apply knowledge and skills learned in previous

domains/tasks to novel domains/tasks, which share some commonality.
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Transfer Learning



Is transfer learning considers as ML's next frontier?

Drivers of ML success in industry

Supervised learning

. Transfer learning

Commercial
success

Unsupervised learning

Time

- Andrew Ng, NIPS 2016 tutorial

° https://ruder.io/transfer-learning/index.htmi
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“‘Off-the-shelf” strategy

Idea: use outputs of one or more layers of a network trained on a different task as
generic feature detectors. Train a new shallow model on these features.

Assume: Ds = DT

| loss |<7

T Shallow classifier (e.g. SVM)

softmax

g>< fc2 G features
LT——I_ - s =

| |
conv3 | \\\\ [ conv3 I

| conv2 | TRANSFER/ | conv2 |
| | |

| conv1 |

conv1

l Data and labels (e.g. ImageNet) l— | Target data and labels |




Fine-tuning: supervised domain adaptation

Pretrain a network which it is easy to get
labels or select a pretrained network

e E.g. ImageNet classification
e Pseudo classes from augmented data
e Slow feature learning, ego-motion

Replace the last layer with supervised
objective for target domain

Fine-tune network with labels for target
domain

Aligns Dg with D,

Srerain <

S Fine-ture

source
model
Random
Cutput Layar tiization
Layer L- ¢ v oopy ~--ref  Layerl-1
he A WI - e
{ t
Layer 1t copy - Layer 1
t t
Souros dala Targel duts




Freeze or fine-tune?

—
Py
v
o

Bottom n layers can be frozen or fine tuned.

i

loss

e Frozen: not updated during backprop

fc2 + softmax

Fine tuned

e Fine-tuned: updated during backprop

fc1

Which to do depends on target task:

conv3

conv2

frozen

e Freeze: target task labels are scarce, and we want

convi

to avoid overfitting g
e Fine-tune: target task labels are more plentiful In k-0

’_l

general

data

labels




Learning with domain adaptation

Sourc T t
When data at source and sl B ved
target domains come from R A, .
similar but different A AB - = X A Misclassity
distributions Somosiiomia B o d— 5 ©
Classifier -~~~ o O  Domain
Shift (@]
@) ®)
Create a new feature space R, \
that cannot discriminate KK
between the source and A -
target domains and classify AL -5
. . Cross-Domain ___--""" (5 O oO©0
correctly in both domains Classifier o6 o °

https://arxiv.org/pdf/2010.03978.pdf


https://arxiv.org/pdf/2010.03978.pdf

Domain Adversarial Neural Network (DANN)

\»i»i.i» »l»l.}l
_ &

Input space

Build a network for domain adaptation 5 | B) @ oomen e

- Train a feature extractor and class
predictor on source data

- Train a feature extractor and domain
adaptor on source and target data

- Use a feature extractor and class predictor
at the test time

DANN, https://arxiv.org/pdf/1505.07818.pdf



https://arxiv.org/pdf/1505.07818.pdf

Backpropagation during training

Design the loss function in a way that we have
- Good class predictor
- Bad domain classifier

z
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Minimising domain shift during backprop.

gradient reversal layer

e |eaves the input unchanged during forward propagation
e reverses the gradient by multiplying it by a negative scalar
during the backpropagation
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Semi-supervised domain adaptation

When some labels are available in the target domain,

then we can use these when doing domain adaptation.

Simultaneously optimizing different criteria:

e C(Classification accuracy on both source and target
datasets
e (Goodness of mapping different domains

Fully labeled source domain

Partially labeled target domain




To transfer or not to transfer

Use transfer learning when

Source and target domains are similar Hamilet %

MAGICALQUOTE

enough! :
T: gtdt tis relativel I ¥ RO NOT
arget data set is relatively sma w4
o TOBE, THAT IS
Source model has been trained on a i
quite big data set ww [HEQUESTION.

Source domain contain diverse set of
the data, and not from a domain-specific
task
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Goals

* Predicting lifetime of each individual battery

» Suggesting actions to extend battery lifetime

* Monitoring of other components in electric driveline,
e.g. battery contactor

* Estimating energy consumption and proposing services for
different behaviour groups






Challenges

Real data is complex

e Relevant information is seldomly directly measured
o Labels (repair vs actual fault)
o  Sensor measurements (limited number of sensors)

e Data is heavily imbalanced

e Normal operation is difficult to characterise

o  Concept drift due to usage & external conditions
e Missing data
e Low data frequency



Typlcal Approach - Classical supervised machine learning

Input Data and
historical repairs

Feature
Selection

Model
(Classification/
regression)

—y

Task / e.g.
Predictive
Maintenance




Analysing the current replacement strategy

e (Can we create a model that predicts the current strategy?

e How can we improve the current strategy?

ESS Replacement

Readouts
@D O“O..QOCOQ“.QQO“.OQH.OOO

= )JO®Oeo00 o0 O ® e O o e B e O

:
"D 0 ® 0 0 ®0 000 O O ® KOV 00000 @O ® 0 @® ¢ n

27 July 2015 19 August 2015 11 September 2015 4 October 2015 28 October 2015 20 November 2015 13 December 2015 5 January 2016 28 Januar

Time



Results of ESS replacement model

- A ML model to estimate if a bus is approaching an ESS replacement due date, based
on operating parameters.

- Trained with 360 buses data and tested on 90 buses.

All - 180 Days Predicted: No Predicted: Yes
Actual: No 7,441 1,427
Actual: Yes 1,041 1,834

BSLH — 180 Days

Predicted: No

Predicted: Yes

Actual: No

3,516

933

Actual: Yes

654

2,540




Survival of batteries for hybrid buses

Different survival patterns

Survival Curves
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Explanation for pattern

S(t)
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Estimating and predicting the State of Health (SOH) for batteries

for hybrid buses

=Target SO
- Estimatind SOH

~Target SOH
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Estimating and predicting the State of Health (SOH) for batteries
for hybrid buses

Measured vs Predicted SOH Regression Measured vs Predicted SOH Regression

100 1

0 4

Predicted SOH
d

Predicted SOH
d
=
=
B

. B ..'.'
Metric All (3212 Buses) Monotonic-decreasing
Function (2049 Buses)
MAE 2.60 1.04
R? 0.81 0.98
Correlation 0.90 0.99

M. G. Altarabichi, Y. Fan, S. Pashami, S. Nowaczyk, and T. Rognvaldsson. Predicting State of Health and End of Life for Batteries in
Hybrid Energy Buses. ESREL-PSAM 2020 Conference, Italy, 1 - 6 November 2020.



There are more challenges ...

e How to deal with a new system or a new configuration?
O  Can we avoid collecting a lot of new data?
O  E.g. Hybrid vs. full-electric, single vs. double deck
e How to deal with a different usage pattern?
O  E.g. deployment in a new country, long haul vs delivery vehicles
e How about diversity in operating conditions?

O Do we need a new model for every possible operating condition?






Where did we use transfer learning? Hypr:
Idb‘lses
Modelling State of Health of Li-lon Batteries
- Vehicle type
single decker, double decker, articulated
- Battery generation Health: Good
Akasol, Samsung, ... ¥0I:'age|: 392?;"_\/
_ . ecnnoiogy: Li-ion
Countries Temp: 34.3°C
Sweden, UK, ...
- Data driven grouping Status:

Charging (USB)

Level: 52%

0%
e ———|




Practical Approach - bomain adaptation
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Sample Based Transfer Learning for
Predictive Maintenance



Selecting the right sample population

for modelling

o Physical configurations
Deployment areas
Operating conditions
Usage patterns

o O O O

Finding homogeneous sub-fleets

based on similarity
o Learning the representation to capture the
characteristics of the equipment
o  Grouping peers with clustering and a
similarity metric

e g
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Sample Based TL for Predictive Maintenance

A data-driven approach for finding the

sub-fleet cluster from the whole population

o Learning the representation of different equipment
from sensor data

Fuel Consumed

A

xx ¥

City Bus

% x

x %

Mileage



Sample Based TL for Predictive Maintenance

e A data-driven approach for finding the

sub-fleet cluster from the whole population

o Learning the representation of different equipment
from sensor data

I\ Representation for
City Bus

X

Fuel Consumed

Mileage



Sample Based TL for Predictive Maintenance

A data-driven approach for finding the

sub-fleet cluster from the whole population

o Learning the representation of different equipment
from sensor data

Fuel Consumed

A

Mountain Bus

City Bus

Mileage



Sample Based TL for Predictive Maintenance

: oy Feature S Mountain B
e Adata-driven approach for finding the SATHTE SPRce ountain B8
: E City B
sub-fleet cluster from the whole population 2 S
-
o Learning the representation of different equipment g <
from sensor data Ol /%
o Finding clusters of peers in the representation space ,_%
l Mileage
Representation
Space A Mountain Bus
o
8
% City Bus

Intercept



Sample Based TL for Predictive Maintenance

Feature Space Mountain Bus

e A data-driven approach for finding the
sub-fleet cluster from the whole population

O

O

Learning the representation of different equipment
from sensor data

Finding clusters of peers in the representation space

A

Fuel Consumed

City Bus

!

Representation
Space
A

Slope

Mileage

Mountain Buses

° [
° ([ W
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. ‘ City Buses
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Sample Based TL for Predictive Maintenance

e A data-driven approach for finding the
sub-fleet cluster from the whole population

O

Learning the representation of different equipment
from sensor data

Finding clusters of peers in the representation space
Modelling the health indicator for each cluster

Feature Space

A

Fuel Consumed

Mountain Bus

City Bus

!

Representation
Space
A

Slope

Mileage

Mountain Bus Cluster

City Bus Cluster

Intercept



Sample Based TL for Predictive Maintenance

e A data-driven approach for finding the
sub-fleet cluster from the whole population

O

Learning the representation of different equipment
from sensor data

Finding clusters of peers in the representation space
Modelling the health indicator for each cluster
Matching the testing unit to a cluster and cast
predictions on the health indicator

Feature Space
A

Fuel Consumed

l

Representation

Space

Slope

A

Mountain Bus

City Bus

Mileage

Mountain Bus Cluster

Testing Sample

City Bus Cluster

Intercept



Sample Based TL for Predictive Maintenance

e A data-driven approach for finding the Feature Space Mountain Bus

. b5 I City Bus
sub-fleet cluster from the whole population £
o Learning the representation of different equipment g <
from sensor data Ol /%
o Finding clusters of peers in the representation space L%
o Modelling the health indicator for each cluster Mileage
o Matching the testing unit to a cluster and cast !
predictions on the health indicator Representation Mountain Bus Cluster
e Configuring the method based on the context 3P,
information Testing Sample

o Selecting the representation based on the
characteristics of the features (linear or piecewise
linear for accumulative variables)

o The characteristics of battery deterioration varies
between different generations

Slope

City Bus Cluster

Intercept



Results of Forecasting SOH

e Given five years of historical data

o Predict SOH value at the end of the fifth year, given four and a half year of data for

training

Methods

Training set vehicles (four years
and half data included in the
training process)

Leave-out set vehicles
(completely excluded from the
training process)

Random Forest (conventional
approach)

3.2258 + 0.1168

3.6935 + 0.3017

FP linear model, k-means
clustering, Random Forest

2.2137 +£ 0.0826

2.5629 + 0.322




Feature Based Transfer Learning for
Predictive Maintenance



The Problem with Identifying Invariant Features

e ML faces a significant challenge in dynamically evolving environments,
where the training conditions (domain) are different from the testing

conditions.
e Aim is to identify features that are invariant across different domains.

>< 3
' o
X

3

Magliacane et al, 2018. Domain adaptation by using causal inference to predict invariant conditional distributions.
In Advances in Neural Information Processing Systems (pp. 10846-10856)



|dentification of Invariant Features using GA

e \We propose to use a Genetic Algorithm (GA) to select invariant
features to transfer across multiple source domains D..

e \We make a similar assumption to (Magliacane et al, 2018): if a feature
subset is invariant across all source domains, then this holds in the
target domain.

e The GAis initiated with a population of individuals encoding feature
subsets as chromosomes of binary strings.

e The GA evaluates feature subsets according to their performance
across all available source domains.



An Application to Li-lon Batteries

e Our modeling of Li-lon batteries showed that the hybrid bus battery
deterioration processes vary significantly across different bus
configuration and operating conditions.

e The GA s used to select invariant features to SoH (State of Health)
that can be transferred from source to target domain.
e Our preliminary results identified invariant features under change of:
o Battery Generation.
o Chassis Type.
o Operating Country.



Invariant Feature Selection (Battery Generation)
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Altarabishi, M.G., et al. Extracting feature selection for predicting State of health of batteries in hybrid buses. DSAA 2021.



Experimental setting

e 1500 hybrid buses
e Different physical configurations

O  Double-Decker, Single-Decker, Articulated

° Scenario # Source Domain Dg Target Domain D
¢ 1 Moderate, Fast Slow
2 Slow, Fast Moderate
3 Slow, Moderate Fast
4 Double-decker, Articulated Single-decker
5 Single-decker, Articulated Double-decker
6 Single-decker, Double-decker Articulated




Performance comparison on all six

Slow Moderate Fast Single-decker | Double-decker | Articulated

GA* 150001 159+001 1.88+0.01 GA* 2.05 = 0.00 1.53 +10.01 1.48 + 0.01
GADIF 1.54 £0.02 1.65 £ 0.01 1.96 = 0.02 GADIF 2.27 £0.03 1.53 + 0.01 1.67 = 0.03
Pearson 1.54 £ 0.06 1.74+£005 2.02+0.01 Pearson 2.16 £ 0.12 1.54 + 0.03 2.08 = 0.16
RF 1624007 1724007 199 £0.04 RF 2.19 £ 0.14 1.54 + 0.03 1.78 +£ 0.10

LR 1.75« 006 1812007 212 +£0.02 LR 2.29 + 0.09 1.67 + 0.01 2.07 £ 041
SES 154+ 007 173007 203 +£0.09 SES 2194012 1.60 + 0.03 2.0 & 015
XGB 154+ 007 174+£005 1.99+0.11 XGB 2,16 £0.12 1:57 £0.02 2.08 £0.16
All Features 1.53 £ 0.07 1.72+£0.09 2.06 +£0.14 All Features 2.19 £0.21 1.68 = 0.05 2.07 £ 0.18




Ranking of features

"total time” and "hybrid time” are of
the highest ranked two features

- followed by "hybrid distance”,

»n

"electrical time”,"total distance”
and "ESS age’

10 A




Domain Adaptation for Predictive
Maintenance



Multi-domain adaptation for regression under

conditional distribution shift

Taghiyarrenani et al. Expert system with application. 2023

X2

X1



Multi-domain adaptation for regression under
conditional distribution shift

lpsp = |ysi'j —d(x',x)|

Feature Extractor

Feature Extractor

Taghiyarrenani et al. Expert system with application. 2023



Problem Formulation

Target
Source 1
e

Before Sourc
Adaptation m

After
Adaptation

Two domains
- semi-supervised
- enough data in
source
- little data in target

Multiple domains
- Supervised
- Little data in all

Target

Source 1

Domain Generalisation
- No data in target



Transfer learning from single decker to double decker

MAE
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Single_deckerDouble_decker___ Articulated_Original



SOH Models trained on Sweden & Norway transfer well to other countries.

TrainedWithSwe_org
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