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Anomaly Detection

• Observations which do not fit to a distribution of a given

process.

• A small fraction of all observations

• Diverse and sparse
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Anomaly Detection

Supervised methods Unsupervised methods

• Requires labels for

training

• Needs balanced dataset

• Learns patterns based on

the provided labels

• Better control over

learning procedure

• No labels for training

• Does not require dataset

balancing

• Learns general patterns in

the data

• Little control over

learning procedure
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Anomaly Detection

Unsupervised methods

• Isolation Forest: It identifies anomalies by isolating them

into shorter paths in a binary tree structure.

• One-Class SVM: It learns a boundary that encompasses the

majority of data points, classifying outliers as anomalies.

• Autoencoders: Neural networks are used to compress and

reconstruct data, and anomalies are detected by measuring

reconstruction error.

• Local Outlier Factor: It assesses the local density of data

points, identifying those with significantly lower density.

• HBOS: It creates histograms for individual features and

combines their outlier scores to identify anomalies.
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Motivation

Real-world datasets

• represents a real-life scenario

• they are often of low quality, which makes AD tideous task.

• the number of actual anomalies might be very limited.

• the data might miss labels or be poorly annotated (no

ground-truth)

• data might be affected by concept drifts.

• require expert knowledge to understand the source of

anomalies.
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Motivation

Synthetic datasets

• access to the ground-truth

• might be adapted to the specific needs

• can be based on artificial dependencies between features

• lack real-world variability

• difficult to model real anomalies
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Available benchmarks

Numenta Anomaly Benchmark (NAB)

• Artificial and real-world datasets

• Includes industrial examples

• Univariate time series

CMAPSS

• Run-to-failure simulations of aircraft engine

• Desgined for remaining useful life estimation

• 4 datasets with different level of difficulty

• Up to 2 failure modes and 6 operating conditions
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Available benchmarks

Credit Card Fraud Detection

• 30 features and ¿200k observations

• Relatively low number of anomalies ( 0.17%)

KDD Cup 1999 Data

• Intrusion detection data

• 40 features and ¿4M observations
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Available benchmarks

Yahoo Webscope Anomaly Detection Dataset

• 367 real and synthetic time series data

• Includes e.g. production traffic in computer networks

MetroPT dataset

• Real-world data from a metro train with digital and analog

signals

• Developed for the anomaly detection and failure prediction
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Tandem Cold Mill

Schme of 4-high rolling mill with 4

stands [2]

Actual cold rolling mill (Kraków,

Poland)
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Tandem Cold Mill

Most important rolling parameters

• Reduction (draft) of the thickness

• Rolling force

• Rolling torque

• Rolling speed

• Forward and backward tensions

• Mechanical properties of the materials

• Power consumption

12



Tandem Cold Mill

Friction coefficient

• Friction coefficient affects the rolling force and torque.

• Difficult to precisely estimate due to complexity of the

phenomemnon.

• Is not constant along the roll-strip arc of contact.

Mechanical properties of steel

• Depends mainly on the chemical composition of the material

and its pretreatment.

• Determines the energy required to deform the material.
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Tandem Cold Mill

ε = log
h0
h1

(1)

σ = σ0 + Kεb (2)

Mechanical characteristics of the steelgrades
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Tandem Cold Mill

Bland-Ford model

Fr = 2R ′
[∫ ϕn
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where Fr - rolling force [N]; Tr - rolling torque [Nm] R ′-deformed roll radius

[m]; ϕ - contact angle [rad]; k - strip yield stress [Pa]; σ - strip tension [Pa]; h -

strip thickness [m]; µ - friction coefficient [-] ; H - dimensionless thickness [-];

i - entry; o - exit, n - neutral point.
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Tandem Cold Mill

Roll bite [1]

Pressure along the contact arc
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Tandem Cold Mill

Influence of speed and reduction on

friction [3]
Influence of lubricant on friction [3]
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Tandem Cold Mill

Influence of roll mileage on friction [2]
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Dataset characteristics

Main assumptions

• We consider a four stand rolling mill, which reduces the

thickness of steel strips.

• We have predefined family of products, which might be

processed. These products differ by the mechanical properties,

thickness, reduction and width.

• The rolling mill have defined characteristics like the motor

power, speed limit, reduction range.

• The parameters of rolling process are dependent on the

physics-based models and correlations adapted from scientific

papers.

• After each rolled product, the parameters of the mill (work

rolls characteristics, lubrication) are updated.
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Dataset characteristics

Assumed relation between different features and friction coefficient
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Dataset characteristics

Data generator pipeline
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Preliminary results

PCA visualization of the example dataset
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Preliminary results

Exemplary results of Unsupervised Anomaly Detection

Model Precision Recall F1 PR AUC

Autoencoder 0.773 0.630 0.695 0.782

Half-Space Trees 0.293 0.239 0.263 0.298

Isolation Forest 0.480 0.391 0.431 0.497

LODA 0.547 0.446 0.491 0.543

LOF 0.507 0.413 0.455 0.526

One-class SVM 0.533 0.435 0.479 0.565

23



Summary



Summary

• We present synthetic data generator based on cold-rolling

process.

• Includes 4 different types of anomalies.

• Allows to generate concept drifts.

• Ground-truth for evaluation of ML and XAI methods.

• Possibility to customize the dataset to the specific needs.

• Research ideas: Anomaly Detection, Remaining Useful Life

prediction, Concept Drift detection, Domain Adaptation,

Explainable AI
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