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Motivation

Standard Model Physics beyond SM must exist

very successful theory
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Motivation - LHC

Large Hadron Collider - 27 km =27 000 m!

European Strategy for Particle Physics
“Europe's top priority should be the exploitation of the full potential of the LHC"
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Motivation - Monte Carlo Event Generators (MCEQ)

Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian

o

R P
- ‘-F,B)L +he
‘ * & %jh?ﬁkc

+*Ref-v@

Experiment
LHC event

Data makes you smarter

It doesn't matter how
beautiful your theory is,
it doesn't matter how
smart you are. If it
doesn't agree with
experiment, it's wrong.

Richard P. Feynman
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Motivation - Monte Carlo Event Generators (MCEQ)
Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Experiment
Standard Model Lagrangian LHC event

e MC event generators are designed to bridge that gap
e “Virtual collider” = Direct comparison with data
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Motivation - Monte Carlo Event Generators (MCEQ)
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Motivation - Monte Carlo Event Generators (MCEQ)

Almost all HEP measurements and discoveries in the modern era have relied on MCEG,

most notably the discovery of the Higgs boson.
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Motivation - Monte Carlo Event Generators (MCEQ)

Almost all HEP measurements and discoveries in the modern era have relied on MCEG,
most notably the discovery of the Higgs boson.
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Motivation - Monte Carlo Event Generators (MCEQ)

Almost all HEP measurements and discoveries in the modern era have relied on MCEG,
most notably the discovery of the Higgs boson.
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" % SystUnc. ; Last year Pythia 6 manual
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> Main generators: Herwig, Pythia, Sherpa are cited by most papers from LHC experiments.

Published papers by ATLAS, CMS, LHCb: 2252
Citing MCnet projects: 1888 (84%)

3/02/2020, NCN QCD ex-Machina, A. Siédmok



Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™
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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke'\Y

Hadronization;
one of the least understood elements of MCEG
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Motivation - Monte Carlo Event Generators (MCEQ)
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Motivation - Monte Carlo Event Generators (MCEQ)
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Motivation - Monte Carlo Event Generators (MCEQ)
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Motivation - Monte Carlo Event Generators (MCEQ)
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Hadronization models

Hadronization:
Early 1980's Early 2020's
(lot of progress in ML)
/ STRING Hadronization ] \ / CLUSTER Hadronization ] \
\ - e
U -
/// A/Q > 1
\ = | TV N >

Idea of using Machine Learning (ML) for hadronization.
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QCD ex Machina - building blocks

Pioneering ideas of using Machine Learning (ML) to improve hadronization.
> Why ML?

INSPIRE search: ("machine learning” or "deep learning" or neural)
and (hep-ex or hep-ph)

| From D. Shih, Boost Conf. MIT 2019
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Year

In HEP: Higgs boson [Nature 560], Quark/Gluon jet discrimination, PDF (inverse to hadronization),...

19/02/2020, NCBJ QCD ex-Machina, A.



QCD ex Machina - building blocks

Pioneering ideas of using Machine Learning (ML) to improve hadronization.
> Why ML?

INSPIRE search: ("machine learning" or "deep learning" or neural)

Selected Papers: 1,234

Total Papers: 1,234
Date of paper

Year: 2022

H of papers / year

1977 2023

Year

In HEP: Higgs boson [Nature 560], Quark/Gluon jet discrimination, PDF (inverse to hadronization),...

19/02/2020, NCBJ QCD ex-Machina, A.



Motivation - Monte Carlo Event Generators (MCEQ)

° GitHub

N  HEP ML Living Review Yross ¥eo

Home Recent About Contribute Code of conduct Resources Cite Us

Table of contents

A Living Review of Machine Learning for Particle Physics

Reviews

Modern reviews

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. Specialized reviews
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to Classical papers
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate Datasets
the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be Classification
as useful as possible. Suggestions are most welcome. Parameterized classifiers
Representations
Targets
v ; Learning strategi
Expand all sections Collapse all sections sarmng Aleiedies
Fast inference / deployment
Regression
. Pileup
Reviews
Calibration
Recasting
E Modern reviews >
Matrix elements
Parameter estimation
i . 5
H Specialiced reviews Parton Distribution Functions
(and related)
B Classical papers > Lattice Gauge Theory
Function Approximation
H Datisots N Symbolic Regression

Monitoring
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Motivation for Machine learning hadronization

Idea of using Machine Learning (ML) for hadronization.

e Existing hadronization models are highly parameterized functions.

e Hadronization is a fitting problem

ML

- Can ML hadronization be more flexible to fit the data?

- Can ML hadronization extract more information from the data?
[can accommodate unbinned and high-dimensional inputs]

NINPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to fragmentation functions (FF) which were considered the

counterpart of PDFs. gg luminosity

Vs =14 TeV
1.25+

71 MSHT20 (68% c.l.)
1.20 X CT18' (68% c.l.)
1.15 - 1 NNPDF3.1' (68% c.l.)
S '
T 1.10 1
g
o 1.05
2 1.001
©
o
0.95
0.90 Higgs physics
0.85 ’ T 1
10! ! 107 l(:)3
m my (GeV) New physics
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Recent progress: Machine learning hadronization

First steps for ML hadronization:

HADML - [A. Ghosh, Xi. Ju, B. Nachman AS, Phys.Rev.D 106 (2022) 9]

MLhad - [P. llten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

MLhad

HADML

Deep generative
model:

Variational Autoencoder

Generative Adversarial
Networks

Trained on:

String model

Cluster model

Recent progress:

“Reweighting Monte Carlo
Predictions and Automated
Fragmentation Variations in
Pythia 8"

[Bierlich, llten, Menzo, Mrenna,
Szewc, Wilkinson, Youssef,
Zupan, 2308.13459]

(see Christian’s talk)

“Fitting a Deep
Generative
Hadronization Model”

[J. Chan, X. Ju, A. Kania, B.
Nachman, V. Sangli and
AS, JHEP 09 (2023) 084]
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What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

= = = j_*m

Deep generative models: the map is a deep neural network.
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Our tool of choice: GANs

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]

Generative Adversarial Networks (GANS):
A two-network game where one maps noise to structure
and one classifies images as fake or real.
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.

/l@

7

7//
//I/ I//I/,
Q7. 7 7
7 l/ @// n
7 7 707

He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.

Andrzej Siodmok
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

o . Q=35GeV
0.8 I Q=091.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 - Q 1000 GeV 7
0.5 - - e Pre-confinement states that the spectra of clusters
04 L | are independent of the hard process and energy of
03 L i the collision
0.2 | -
0.1 | -

0 ; Ly . .|

1 10
M/GeV

" [S. Gieseke, A. Ribon, MH Seymour,
P Stephens, B Webber JHEP 0402 (2004) 005]
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

e ML hadronization
1st step: generate kinematics of a cluster decay:
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Road map for today

HadML* v1 Generator
PRD 106 (2022) 096020

o

—» Hadrons

Discriminator
Cluster == Hadrons I

Parton =% Cluster

Frag
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Generative Adversarial Net
HadML* v1 Generator
. PRD 106 (2022) 096020

> <

. Parton = Cluster

-» Hadrons

Discriminator .

Cluster P Hadrons
Frag

.................................................
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

Generative Adversarial Net
HadML* v1 Generator
. PRD 106 (2022) 096020

We have a conditional
GAN, with cluster
4-vector input and two

hadron 4-vector outputs.

-» Hadrons

> <

. Parton = Cluster

Discriminator .

Cluster P Hadrons
Frag

..................................................

Training data:

ris

ete™ (()11151()115 at

m°(E, pz, py, p-) | Simplification:
considering only
Cluster (E, pz, py, p-) pions and generating
two angles in the
TE, pe, py, p=) | cluster rest frame.
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

W,,b,

Input layer -+ Output layer

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator
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Training HADML vl

Losses

0.9 1
0.8 1
0.7 1

0.6 1

—— Discriminator Loss /2 [ 0.6
Generator Loss
= 0.5
I un
L 0.4 8
; =
()
ahed
&
()
TO 3 g
(O
[ =
-
e
TO.Zm
0.1
il <
— [
— 3+ 0.0
0 200 400 600 800 1000
Epochs

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Simplification:
considering only pions
and generating two
angles in the cluster rest
frame.

This is a typical
learning curve for
CAN training
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Integration into Herwig

GPU CPU
zPEdﬁﬂi il . - We extract
: clusters + hadrons |
NN
¥ ) rnge d
. Trainin Event generation
@ python 9 9

Re-insert the model
back into H7

ONNX
RUNTIME

This then allows us to run a full event generator and produce plots

AIRA - Jagiellonian University, 30.11.23 Andrzej Siodmok



Performance: Pions

Low-level Validation

. g 0 0
(similar to training data) m T
eTe~ collisions at VS ar° kinematic variables
Vs = 91.2 GeV
I 0

T . - . + 0 R . - . 0
Pseudorapidity distribution of 77 and 71’ multiplicity, Pert=0 Transverse momentum distribution 71, Pert=o
= 1 1 T T T I T T T T I T T T T [ T T T T [ T T T — ~ I E= T T T T T T T I T T T T l T T T T I T T T T
o L ~
) £
& i —— Hy 1 = E Hy
B sal —+— H7+HADML Jd Bt H7+HADML
5 - i B
NG - — = :
— L N —
2
0.6 — = 10 " E
0.4 — ] 1072 E-
B = 4 =
0.2 — 0 TE
L s 5
0 L T R W= E mﬁl I BRI
0 4 5 0 40 50
n Pr [GeV]
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Performance: Data!

With a “full” model, we can compare directly to data!

LEP DELPHI Data

IIIIIIIIII

—+— Data

H7

[IIII

—+— Hyz+HADML 7

I T

Al

"
M

0.4

0.5

0.6

1 — Thrust Sphericity, S
:- I[IIIIIIIIIII I]l T 1 ::;, ]lllllllllllllllllllllll
.— 10} g\’\‘% '——1§ *\: I()‘ g
- , -
S 1 ] —3
= E 3 L=
s = 3
L —— Data“‘:%_Lo— -
K ; t Hy S T— ? o8 207
E —— H7+HADML A 3 1o E
10 > 3 E
E 7 10
107 |~ i
E 4 3
: I L 1 I o HEEG | — L LITA L : 3
_l I 1] T ' T T T 1 1] l_ V _| {5 ; | T T ] T l T
A E E 3 13 E
1.2 B - 8 1.2 E I
( I {—4:11—" - U 0. T
1 T IEERE
82 3 | R | i B 82
o0 0.1 0.2 0.3 0.4 0.5 (o) 0.1 0.2 0.3
1-T
M ?
N.B. we have trained on H7, so we don't expect
to be any better than it at modeling the data.

lllIlllllIlllllllllllllllllllllllilll

0.7

0.8
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Road map for today

HadML* v1 Generator
PRD 106 (2022) 096020

o

—» Hadrons

Discriminator
Cluster == Hadrons I

Parton =% Cluster

Frag
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Road map for today

HadML v2: Closure Test

(this paper)
—» Hadrons
Parton =% Cluster —»
Event —» Parton =% Cluster =—» —» Hadrons
Parton = Cluster =9
—» Hadrons

T,

{
11

HadML v2: Stress Test
(this paper)

Parton =% Cluster —p

Event =—» Parton =% Cluster =9

Parton = Cluster =—»

Parton = Cluster —»

Event = Parton =% Cluster =%

Parton = Cluster —»

—» Hadrons

—p Hadrons

—» Hadrons

—» Hadrons

J —» Hadrons

—» Hadrons

Protocol for fitting a deep generative hadronization model in a realistic data setting, where we

only have access to a set of hadrons in data.

AIRA - Jagiellonian University, 30.11.23
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Discriminatc




Discriminator HadML v2

Hadron 40

4 )

Hadron > » Discriminator P—— true/false

- J

Hadron

The discriminator function is modified, we parameterize is as a Deep Sets model

n ) invariant under

1
Dg(z)=F | - Z ® (h;,wpy) ,wr permutations of
i1 hadrons
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Training HADML v2

Losses

1.4 4

1.24

1.0+

0.8 1

0.6 -

0.4 ~

- Discriminator Loss
Generator Loss

T
&
un

T
&
IS

™~

0.7

L]
b
o

Best Wasserstein Distance

0.1

Now, the generator is
local (per cluster), but
the discriminator is
global (whole event).

Discriminator is a
permutation-invariant
architecture called
Deep Sets.

Simplification only

Pions
0 1000 2000 3000 4000 5000 6000

Epochs

Still works'!
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Performance
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Performance: going beyond inputs and outputs

i
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nital GAN H7 Cluster Initial GAN H7 Cluster
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MINIMAL AR? = A¢* + An?
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f HadML* v1 Generator . E HadML v2: Stress Test
PRD 106 (2022) 096020 (this paper)

HadML

1
|
1
1
|
1
1
]

/ T Parton = Cluster = =24
+ Parton = Cluster I Discriminator . ' :
: \ '+ Event — Parton = Cluster = |4IEIC] — Hadrons | <——
' = Hadrons v '
: - Parton = Cluster —» :
: 8 Cluster —» Hadrons ;
isimilar setup for string model MLHac 2203.04983 E . . §
|=“....m..".,~,.,:...m,.w..,.an.m,.“".....,..".,”._,..,"m...r..,..vm; . I ©
; v E
PR L L L L L L L, R S L LI EELELLELLE LR U -
HadML v2: Closure Test : Generator x n 4
(this paper) : L1 B
Cluster ' g
—» Hadrons —» Hadrons ! .
Parton = Cluster —» Fraa ; Parton =% Cluster = HadML 'y
Cluster | Event —» Parton =% Cluster = — Had :
Event = Parton =% Cluster =—» —» Hadrons vent arton uster HadML SeIons

Fraq

Parton =% Cluster = [ #1511 Parton = Cluster —»

|Z7-1s )| —> Hadrons pEE LU —» Hadrons

Dlscrlmlnator

A key advantage of this fitting protocol over other methods is that it can
accommodate unbinned and high-dimensional inputs.

The approach could also be used to tune (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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e For HADML, we have made significant progress, but there
are still multiple steps to build and tune a full-fledged
hadronization model.

What is next?

e Number of technical and methodological step needed:

- Directly accommodate multiple hadron species with their relative probabilities
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Directly accommodate multiple hadron species with their relative probabilities

Normalized to Unity
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e For HADML, we have made significant progress, but there

are still multiple steps to build and tune a full-fledged m
hadronization model.
e HADML is naturally suited for GPUs o

What is next?

e Number of technical and methodological step needed:

>
>
>
>
>

Directly accommodate multiple hadron species with their relative probabilities

Include heavy clusters (so far done by Herwig)

Hyperparameter optimization, including the investigation of alternative generative models
More flexible model with a capacity to mimic the cluster or string models and beyond.

Tune to the LEP data

There is still a multi-year program ahead of us, but it will be worth it!

Early 1980's Early 2020's
¢ = HADML on
) SO m— s Quantum
o Computer?

So Stay tuned!
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e Data normalization:
cluster’s four vector and angular variables are scaled to be between -1 and 1
(tanh activation function as the last layer of the Generator)

e Discriminator and the Generator are trained separately and alternately by two
independent Adam optimizers with a learning rate of 1074, for 1000 epochs

—— Discriminator Loss /2 [0.6

Generator Loss
0.9 A

F0.5

0.8 1

T
S
IS

Losses
o
w
Best Wasserstein Dis

0.7 4

T
o
N

0.6 1
POz

r x r . . — 0.0
0 200 400 600 800 1000
Epochs

e The best model for events with partons of Pert = O, is found at the epoch
849 with a total Wasserstein distance of 0.0228.
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Wasserstein distance

The Wasserstein distance
e For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
e EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = min B(y)
YEIl

e Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example

5th Inter-experiment Machine Learning Workshop



Wasserstein distance

Q Xq A “moving plan” is a matrix

| 1

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

BO) = D ¥(pxg) 1% —

XpXq

Earth Mover’s Distance:
W(P,Q) = minB(y)
y€Ell

moving plan y The best plan
All possible plan I1

Iulh__fji
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Discriminator HadML vl vs v2

HadML vi

The loss function:

L=— > (og(D(r()+log(l—D(G ()

A~HERWIG, z~p(z)

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

1 mn
Delx)=F [ = b (h;,¢ CWE
E () (n; (h wD<p),wF>

® embeds a set of hadrons into a fixed-length latent space and F' acts on the average

invariant under
permutations of
hadrons

L=- Z log (DE (x)) — Z log (1 — Dg ({G (2,M)}))

x~data {G}~HERWIG, z~p(2)

The approach could also be used to fit (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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Performance: Energy of the collisions

Low-level Validation

0 0
(beyond training data different energy) m am
e"e” collisions at VS a9 kinematic variables
Vs =192 GeV
ar© qTO
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Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons) hi h1
e"e” collisions at VS h kinematic variables
Vs = 91.2 GeV
h2 h2

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.

Pseudorapidity distribution of kaon multiplicity Transverse momentum distribution of kaon
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