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Machine learning

application of machine laerning should allow computers to operate on real objects O and
lead to answers, which are easily understandable by humans

differnt tasks can be solved in this way

naturally computers cannot operate on real objects and concepts, so they need to be
properly encoded Λ

(
O,RN

)
(feature extraction) and model outputs need to be decoded

Λ
(
RM, {1, . . . , L}

)
or Λ
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)
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Representation

there are many models (trainable or not) that solve typical tasks, but manually extracted
features RN usually do not satisfy their requirements

that is why additional, representation (embedding) module f1 ∈ Λ
(
RN,RK

)
is required to

adjust the extracted features

consequently mentioned above models operate in embedding space f2 ∈ Λ
(
RK,RM

)
reresentation (embedding) module is usually trainable
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since models solving typical tasks are known (predictors, metrics), in practice we usually
focus only on representation learning

mainly we are interested in feedforward architectures (no cycles and loops)

all blocks can be trainable or not, but all of them should be differentiable with respect to
their inputs and parameters (possible end-to-end training)
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explainability is required if trained models have a crucial influence on people or
environment

explainability should provide model insights to satisfy needs of some targeted audience

explainability is necessary since system learns undesirable tricks

methods can be model specfic or model agnostic

methods can be local or global

methods can explain model (internal, surrogate)

methods can explain phenomenon (attributions, counterfacts)

explanations can have different form (text, image, rules)

explanations should use interpretable components

it is hard to assess quality of explanations

explanations can lead to knowldge discovery
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attribution method assigns scores to inputs based on their contribution to model output
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Attributions

attibutions can be assigned to interpretable components and not to specific inputs

LIME ([10])
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Citation networks ([1])
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before graph representation learning some manual feature extraction for graph elements
(nodes and edges) must be done

although it is not a rule we are interested usually in node features Λ
(
V,RN
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Structure

calculating node embedding we cannot take into
account its features only since nodes are elements of
a structure

that is why we usually define some local
neighbourhood N (v) ⊆ V for given node v ∈ V
for some graphs there is natural spatial ordering of
nodes defined by a position uv ∈ Rd assigned to
every node v ∈ V
node position may be taken into account as an
additional information assigned either to nodes
(global) us ∈ Rd or edges (relative)
ut,s = ut − us ∈ Rd
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Message passing

Message

mt,s = MSG(f(t), f(s),ut ,us)
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Aggregation

mt = AGG(mt,s : s ∈ N (t))



Interpretable components and graph neural networks

Graph neural networks

Message passing

Update

g(t) = UPDATE(f(t),mt)
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Message passing

commonly used graph operators, taking into account spatial ordering of nodes, base on
concepts taken from computer vision (convolutional neural networks) and natural language
processing domain (transformers)

naturally, there are also operators designed for specific graph-based tasks (e.g. GCN,
GarpgSAGE)
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Prediction

Regression loss

In regression problems M = 1 and loss function can be defined as:

Lprediction(zj , y j) = (zj − y j)2

where zj = f(G j , θ) ∈ RM

selected MoleculeNet [14] datasets: ESOL, FreeSolv, and Lipophilicity

feature vectors contained 9 numerical features describing atoms

considered tasks: water solubility prediction, hydration free energy estimation, and finding
octanol/water distribution coefficient
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Prediction

Classification loss

In classification problems M = L and loss function can be defined as:

Lprediction(zj , y j) = − ln
exp zj

y j∑L
l=1 exp z

j
l

where zj = f(G j , θ)RM

selected TUDataset [5] datasets: AIDS, ENZYMES, and PROTEINS

feature vectors were one-hot encoded representation of node class: chcemical element for
AIDS, secondary structure element for ENZYMES and PROTEINS

considered tasks: identification of molecule activity against HIV, assigning a molecule to
one of the six Enzyme Commission top-level classes, and predicting if a protein is an
enzyme
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Explainability

in GT, GAT and GATv2 models attention coefficients αt,s can be used as attributions of
graph edges

to improve interpretability of attention coefficients αt,s a new regularization component of
loss function was proposed

it utilizes the fact that for a given node t those coefficients are normalized with softmax
function, which means that αt,s ∈ [0, 1] for s ∈ N (t) and their sum is equal to 1

the final loss function used during training is L = Lprediction + λ · Lexplain, where λ controls
the trade-off between the two components
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the trade-off between the two components
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only single-headed attention mechanism was used for a fair comparison and easier
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for each operator, we used two layers with batch normalization, dropout, and ReLU
activation function

hidden node embeddings were aggregated using global average pooling

a multi-layer perceptron was used to generate the final predictions

λ was set to 0.1 experimentally.

every experiment was repeated 50 times with 500 epochs per repeat, and the results were
averaged using the best epoch on the validation set.
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Regression

Dataset Operator
Validation set Test set

MSE
Standard
deviation

Best MSE
Standard
deviation

Best

ESOL

GCN 35.24 9.11 8.15 35.24 8.80 8.11
GAT 11.76 5.09 4.62 11.01 5.04 4.46
GT 32.07 18.40 5.61 31.58 17.80 5.41

GT with Lexplain 17.87 11.29 4.53 17.25 11.11 4.46

FreeSolv

GCN 78.64 38.21 17.42 75.11 34.37 17.01
GAT 36.02 16.94 14.42 33.95 15.02 14.17
GT 44.30 26.35 13.91 41.87 25.38 14.01

GT with Lexplain 34.71 11.35 14.14 34.11 17.25 13.86

Lipophilicity

GCN 12.65 6.75 2.34 12.69 6.84 2.35
GAT 10.67 4.54 2.12 10.64 4.58 2.16
GT 12.51 9.19 2.44 12.44 9.15 2.46

GT with Lexplain 2.62 0.80 1.62 2.56 0.77 1.64
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Classification

Dataset Operator
Validation set Test set

Accuracy
Standard
deviation

Best Accuracy
Standard
deviation

Best

AIDS

GCN 80.22 2.81 88.50 79.84 2.27 width=6cm 84.00
GAT 79.84 2.74 85.50 79.91 2.55 86.00
GT 81.05 2.80 86.00 80.49 2.46 87.00

GT with Lexplain 79.75 2.76 86.00 80.03 2.42 86.00

ENZYMES

GCN 30.90 4.14 43.33 20.87 5.69 35.00
GAT 32.03 4.79 46.67 21.43 5.56 35.00
GT 35.17 3.45 43.33 24.03 5.80 40.00

GT with Lexplain 36.77 3.81 45.00 24.33 5.74 35.00

PROTEINS

GCN 73.69 3.99 81.08 68.88 5.27 78.57
GAT 73.39 3.43 81.08 68.55 4.63 76.79
GT 74.29 3.97 81.98 69.20 5.04 79.46

GT with Lexplain 74.22 3.64 81.98 68.66 4.50 78.57
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above tasks can be considered not only for whole images, but for pixels as well

images have their internal structure since they are composed of pixels V organized in a
grid structure
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classic methods operating on pixels were
able to gain 99.87% of accuracy

authors of MoNet for full pixel grid
reported 99.19%

they achieved also 97.30% for 300
superpixels and 91.11% for 75 superpixels
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to generate alternative representation of image o convolutional sparse coding from
SPORCO [13] library was used

to increase sparsity thresholding and non-maximum suppression were applied
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Graphs

fully connected graph was considered where N (v) = V for every v ∈ V
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all architectures were similar (number of layers, embedding sizes, etc.)

presented results are maximum scores from 3 runs with random initial weights
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Reference

in the experiments the reduced number (50, 100, 200, 1000) of training samples was
considered

1000 samples were kept in validation set for early stopping

all architectures were similar (number of layers, embedding sizes, etc.)

presented results are maximum scores from 3 runs with random initial weights

method 50 100 200 1000 ALL

CNN 33.51 55.77 71.62 90.67 99.21
MoNet 16.41 58.79 71.77 85.11 97.38
GT 47.94 66.52 77.02 88.87 96.52
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Augmentation

method 50 100 200 1000 ALL

CNN 33.51 55.77 71.62 90.67 99.21
MoNet 16.41 58.79 71.77 85.11 97.38
GT 47.94 66.52 77.02 88.87 96.52

CNN with augmentation 39.61 61.97 76.94 93.75 99.31
MoNet with augmentation 16.14 59.37 74.44 88.11 97.39
GT with augmentation 40.87 72.16 80.94 88.78 96.88

augmentation, for example affine transformations, can artificially increase the number of
training data

if components are interpretable, augmentation can use domain specific knowledge
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Cross-entropy loss

Lce(zj , l j) = − ln
exp zj

l j∑L
l=1 exp z

j
l

confusion matrix uncertainity
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considered concepts
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method 50 100 200 1000 ALL

CNN 33.51 55.77 71.62 90.67 99.21
MoNet 16.41 58.79 71.77 85.11 97.38
GT 47.94 66.52 77.02 88.87 96.52

CNN with augmentation 39.61 61.97 76.94 93.75 99.31

MoNet (α = 0.5) 57.21 67.92 81.60 91.09 97.75
MoNet with augmentation (α = 0.5) 56.25 71.21 82.29 92.34 97.56
GT (α = 0.5) 60.30 75.21 81.84 91.61 96.87
GT with augmentation (α = 0.5) 67.43 78.00 87.76 93.26 97.12

MoNet (α = 1.0) 44.67 56.98 63.87 75.12 76.87
MoNet with augmentation (α = 1.0) 46.88 59.21 66.14 75.93 77.91
GT (α = 1.0) 50.30 59.57 68.54 74.12 77.15
GT with augmentation (α = 1.0) 58.64 67.11 70.23 77.06 77.81
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Summary

Interpretable components allow to:

use domain knowledge other then annotated set of training data

explain results using domain specific concepts, which may lead
to knowledge discovery
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Summary

Open questions:

should interpretable components be universal or task specific?

should interpretable components be carefully designed or
trainable?

are interpretable components only useful in image analysis?
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