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Motivation
‒ In data-driven Predictive Maintenance (PdM) problems, deep learning techniques 

are quite popular
○ good predictive accuracy and capability of modeling complex systems

‒ A critical issue in PdM applications is the design of a maintenance plan after a fault is 

detected or predicted.

‒ It is important to identify the causes of the failure and the component in failure.

‒ Predictions made by black-box models are difficult for human experts to understand 

and make the correct decisions.

‒ Explanations are needed!
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Motivation
Overall Goal

‒ Predict, identify, and describe the occurrence of defects in the operational 

units of a system.

‒ Common XAI methods (e.g. LIME, SHAP) act mostly on offline scenarios.

Contribution

‒ Online anomaly detection and explanation for faults based on two layers:

‒ Fault Detection Layer based on deep learning

‒ Anomaly Explanation layer based on rule learning algorithms
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Fault Detection
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- Train an autoencoder and obtain the reconstruction error (re)

- Signal an alarm based on the distribution of re obtained in the training set

- High extreme values of  re are potential indicators of failure
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● When to trigger an alarm?

‒ High extreme values of re are indicators of fault 

‒ Use boxplot to identify extreme outliers in the training re distribution 

‒ If re > Q3+3.IQR then fault (1) else normal (0)

‒ Apply a low-pass filter to fault/normal output

‒ smooth high frequencies (abrupt changes)

‒ reduce false alarms 

‒ Signal an alarm when subsequent faults makes output > 0.5

Fault Detection
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Online Anomaly Explanation System
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Online Anomaly Explanation System
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Fault Explanation
● How to derive the set of rules?

‒ Input features of the AE (X) and re as target (y)

‒ Adaptive Model Rules (AMRules) 

‒ Rule-based algorithm for incremental regression tasks

‒ The consequent of the rule contains the sufficient statistics to:

‒ expand a rule
‒ make predictions
‒ detect changes

‒ Output: 

‒ Ordered set of rules: decision list that outputs the first rule that covers an example
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Fault Explanation
● How to derive the set of rules?

‒ Both layers run online and in parallel

‒ For each example

‒ classifies it as fault/normal and inputs it to the rule learning algorithm

‒ But, it is an imbalanced regression data stream scenario

‒ The goal is to be accurate at high extreme values of re

‒ One approach is to resort to data-level strategies to tackle imbalance

‒ Sampling strategy based on Chebyshev’s inequality 
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● How to derive the set of rules?

‒ Chebyshev’s Inequality

‒ Y random variable 

‒ finite expected value     and finite non-zero variance

‒  for  any  real number t > 0, we have   

‒ Based on the updated mean and variance of y

‒ Use it as a heuristic to disclose the type incoming examples (average or extreme value)

Fault Explanation

10

Aminian, E., Ribeiro, R.P., Gama, J. (2021): Chebyshev approaches for imbalanced data streams regression models. 
Data Mining and Knowledge Discovery 35, 2389–2466



Rita P. Ribeiro et al., Univ. Porto & INESC TEC 

Online Anomaly Explanation - Predictive Maintenance

AIRA Seminar - GEIST, Jan 2024

Fault Explanation
● How to derive the set of rules?

‒ ChebyUS

‒ under-sampling strategy

‒ the example selection is inversely proportional to the Chebyshev’s probability
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Fault Explanation
● How to derive the set of rules?

‒ ChebyOS

‒ over-sampling strategy

‒ the example is replicated as many times (K) as far it is from the mean,  

given that it is farther than the variance
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Online Anomaly Explanation System
This architecture allows two levels of explanations

‒ Global Explanations

‒ These rules reproduce the AE network behaviour

‒ They explain the conditions when and why AE predicts high re values.

‒ Local Explanations

‒ Rules that are triggered by a given an example.

‒ If re exceeds a threshold, the system outputs the rules triggered by that example.
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Case Study on Metro do Porto
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Case Study on Metro do Porto
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‒ The Compressed-Air Production Unit (APU) in Metro do Porto 

fleet is a vital system without redundancy.

‒ Responsible for alignment of the vehicle with the platform at 

the stations depending on the number of passengers.

‒ Some of its failures are undetectable according to traditional 

maintenance criteria.

‒ It is one of the equipments that most contribute to the cancellation of trips.

‒ Goal: 

identify normal/abnormal behaviours in the data stream obtained from sensors installed 

in the APU system while the train is in operation. 
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MetroPT-2 data set 

‒ Air Production Unit (APU)
‒ 16 sensors installed in 

4 modules

‒ 1 Hz sampling frequency

‒ 5 minute data packets 

‒ 3 month data sample 

‒ 2022-04-28 until 2022-07-28 

‒ ≈ 7 × 106 examples.

Case Study on Metro do Porto
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Case Study on Metro do Porto
MetroPT-2 data set: 8 analogue sensors
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Case Study on Metro do Porto
MetroPT-2 data set: 8 digital sensors
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Case Study on Metro do Porto
Problem Definition

‒ Detect an upcoming catastrophic failure
○ train breaking down and having to be replaced

‒ Warning must be given 2 hours before the LPS signal is active

‒ Ground truth: failures indicated in the Maintenance Report
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Case Study on Metro do Porto
Evaluation

‒ True Positive: model outputs a failure that overlaps with the observed failures.

‒ Predicted failures that are less than 1 day apart are merged
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Case Study on Metro do Porto
Evaluation

‒ Early detection: 2 hours before LPS signal is active
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Experimental Setup
‒ Data Chunks

‒  Compressor cycles-based approach

‒ failures may contain few compressor cycles - no alarm after low pass filter.

‒ compressor cycles may last until train breaks down - no opportunity for early detection.

‒ Fixed time-based approach 

‒ data chunks of 30 min

‒ Prequential Evaluation 
‒ train: 1 month = 8674 sequences / test: 2 months = 14591 sequences

‒ Methods
‒  AE + AMRules with ChebyOS
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Experimental Setup: Autoencoders
●  Long-Short Term Memory Autoenconder (LSTM-AE)
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Experimental Setup: Autoencoders
●  Temporal Convolution Network Autoencoder (TCN-AE)
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Experimental Setup: Autoencoders
●  Wasserstein Autoencoders with Generative Adversarial Networks (WAE-GAN)
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Experimental Results: Online Failure Detection
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LSTM AE 

‒ detects both failures 

‒ does not generate false alarms

‒ is unable to detect the first failure 

before the LPS signal.
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Experimental Results: Online Failure Detection
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TCN-AE 

‒ detects both failures early

‒ generates two false alarms 

‒ F1 of 0.67 



Rita P. Ribeiro et al., Univ. Porto & INESC TEC 

Online Anomaly Explanation - Predictive Maintenance

AIRA Seminar - GEIST, Jan 2024

Experimental Results: Online Failure Detection
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WAE-GAN 

‒ detects the two failures at least 

2h before the LPS signal is active

‒ does not any false alarm 

‒ achieves a perfect F1 score
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Experimental Results: Online Explainability 
Rules for the 1st failure - Air Leak
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Experimental Results: Online Explainability
Rules for 2nd failure  - Oil Leak 

30



Rita P. Ribeiro et al., Univ. Porto & INESC TEC 

Online Anomaly Explanation - Predictive Maintenance

AIRA Seminar - GEIST, Jan 2024

Case Study on Metro do Porto
Wrap-up

‒ Diagnosing failures by modelling time series of sensor data.

‒ Deep autoencoder architectures with different regularization mechanisms.

‒ Autoencoder architecture with adversarial regularization achieves requirements of 

early detection and no false alarms.

‒ Explainability rules indicate failures are explained by sensors related to problems 

discovered by maintenance teams.
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Online Anomaly Explanation in Predictive Maintenance
Two-layer architecture

‒ The two learning systems, the deep learning and the rule learning system, are 

complementary.

‒ AE works in unsupervised mode using data from the normal behavior.

‒ The rule learner works in supervised mode, where the target is the reconstruction 

error of the AE computed in real-time.

‒ The methodology is general enough to be applied to other online imbalanced 

streaming scenarios that use black-box models to predict peaks or bursts in events.
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