Artificial Intelligence in Research and Applications Seminar GEIST Research Group - Jan.2024

Online Anomaly Explanation A Case Study in Metro do Porto

Rita P. Ribeiro, João Gama, Bruno Veloso, Miguel Silva Narges Davari, Ehsan Aminian, Saulo Mastellini, Pedro Pereira

eXplainable Predictive Maintenance CHIST-ERA-19-XAI-012

Motivation

- In data-driven Predictive Maintenance (PdM) problems, deep learning techniques are quite popular
 - good predictive accuracy and capability of modeling complex systems
- A critical issue in PdM applications is the design of a maintenance plan after a fault is detected or predicted.
- It is important to identify the causes of the failure and the component in failure.
- Predictions made by black-box models are difficult for human experts to understand and make the correct decisions.
- Explanations are needed!

Motivation

Overall Goal

- Predict, identify, and describe the occurrence of defects in the operational units of a system.
- Common XAI methods (e.g. LIME, SHAP) act mostly on offline scenarios.

Contribution

- Online anomaly detection and explanation for faults based on two layers:
 - Fault Detection Layer based on deep learning
 - Anomaly Explanation layer based on rule learning algorithms

Online anomaly explanation: A case study on predictive maintenance. In IoTStreams Workshop - ECML PKDD 2022

Ribeiro, R.P., Mastelini, S.M., Davari, N., Aminian, E., Veloso, B., Gama, J. (2022):

Fault Detection

Fault Detection

- When to trigger an alarm?
 - High extreme values of re are indicators of fault
 - Use boxplot to identify extreme outliers in the training re distribution
 - If re > Q3+3.IQR then fault (1) else normal (0)
 - Apply a low-pass filter to fault/normal output
 - smooth high frequencies (abrupt changes)
 - reduce false alarms
 - Signal an alarm when subsequent faults makes output > 0.5

Ribeiro, R.P., Pereira, P., Gama, J. (2016): Sequential anomalies: a study in the railway industry. Machine Learning 105, 127–153

Online Anomaly Explanation System

Online Anomaly Explanation System

- How to derive the set of rules?
 - Input features of the AE (X) and re as target (y)
 - Adaptive Model Rules (AMRules)
 - Rule-based algorithm for incremental regression tasks
 - The consequent of the rule contains the sufficient statistics to:
 - expand a rule
 - make predictions
 - detect changes
 - Output:
 - Ordered set of rules: decision list that outputs the first rule that covers an example

Duarte, J, Gama, J., Bifet, A. (2016): Adaptive Model Rules From High-Speed Data Streams. ACM Trans. Knowl. Discov. Data

- How to derive the set of rules?
 - Both layers run online and in parallel
 - For each example
 - classifies it as fault/normal and inputs it to the rule learning algorithm
 - But, it is an imbalanced regression data stream scenario
 - The goal is to be accurate at high extreme values of re
 - One approach is to resort to data-level strategies to tackle imbalance
 - Sampling strategy based on Chebyshev's inequality

Duarte, J, Gama, J., Bifet, A. (2016): Adaptive Model Rules From High-Speed Data Streams. ACM Trans. Knowl. Discov. Data

- How to derive the set of rules?
 - Chebyshev's Inequality
 - Y random variable
 - finite expected value \overline{y} and finite non-zero variance σ^2
 - for any real number t > 0, we have

$$\Pr(|y - \overline{y}| \ge t\sigma) \le \frac{1}{t^2}$$

- Based on the updated mean and variance of y
- Use it as a heuristic to disclose the type incoming examples (average or extreme value)

Aminian, E., Ribeiro, R.P., Gama, J. (2021): Chebyshev approaches for imbalanced data streams regression models. Data Mining and Knowledge Discovery 35, 2389–2466

- How to derive the set of rules?
 - ChebyUS
 - under-sampling strategy
 - the example selection is inversely proportional to the Chebyshev's probability

Aminian, E., Ribeiro, R.P., Gama, J. (2021): Chebyshev approaches for imbalanced data streams regression models. Data Mining and Knowledge Discovery 35, 2389–2466

- How to derive the set of rules?
 - ChebyOS
 - over-sampling strategy
 - the example is replicated as many times (K) as far it is from the mean, given that it is farther than the variance

Aminian, E., Ribeiro, R.P., Gama, J. (2021): Chebyshev approaches for imbalanced data streams regression models. Data Mining and Knowledge Discovery 35, 2389–2466

Online Anomaly Explanation System

This architecture allows two levels of explanations

- Global Explanations
 - These rules reproduce the AE network behaviour
 - They explain the conditions when and why AE predicts high re values.
- Local Explanations
 - Rules that are triggered by a given an example.
 - If re exceeds a threshold, the system outputs the rules triggered by that example.

- The Compressed-Air Production Unit (APU) in Metro do Porto fleet is a vital system without redundancy.
- Responsible for alignment of the vehicle with the platform at the stations depending on the number of passengers.
- Some of its failures are undetectable according to traditional maintenance criteria.
- It is one of the equipments that most contribute to the cancellation of trips.
- Goal:

identify normal/abnormal behaviours in the data stream obtained from sensors installed in the APU system while the train is in operation.

MetroPT-2 data set

- Air Production Unit (APU)
 - 16 sensors installed in 4 modules
- 1 Hz sampling frequency
- 5 minute data packets
- 3 month data sample
- 2022-04-28 until 2022-07-28
- − \approx 7 × 10⁶ examples.

Veloso, B., Gama, J., Ribeiro, R., & Pereira, P. (2022). MetroPT-2: A Benchmark dataset for predictive maintenance (Version V2) [Data set]. Zenodo

MetroPT-2 data set: 8 analogue sensors

nr.	Module	Description
Analogue		
1	Compressor	TP2 - Compressor Pressure
2	Air Control Panel	TP3 - Pneumatic panel Pressure
3	Air Control Panel	H1 - Pressure above 10.2 Bar
4	Air Dryer	DV - Air Dryer Tower Pressure
5	Air Control Panel	Reservoirs - Pressure
6	Compressor	Oil Temperature
7	Air Control Panel	Flow meter
8	Compressor	Motor Current

MetroPT-2 data set: 8 digital sensors

Digital

9	Electronic Control Unit	COMP - Compressor on/off
10	Electronic Control Unit	DV electric - Compressor outlet valve
11	Electronic Control Unit	Towers - Active tower number
12	Electronic Control Unit	MPG - Pressure below 8.2 Bar
13	Electronic Control Unit	LPS - Pressure is lower than 7 bars
14	Electronic Control Unit	Towers Pressure
15	Compressor	Oil Level - Level below min
16	Air Control Panel	Caudal impulses

Problem Definition

- Detect an upcoming catastrophic failure
 - train breaking down and having to be replaced
- Warning must be given 2 hours before the LPS signal is active
- Ground truth: failures indicated in the Maintenance Report

#	Start Time	End Time	Failure	LPS Time
1	$2022-06-04\\10:19:24$	$2022-06-04\\14:22:39$	Air Leak	$2022-06-04 \\11:26:01$
2	2022-07-11 10:10:18	2022-07-14 10:22:08	Oil Leak	$2022-07-13 \\19:43:52$

Silva, M., Veloso, B., Gama, J. (2023): Predictive Maintenance, Adversarial Autoencoders and Explainability. ECML PKDD 2023

Evaluation

- True Positive: model outputs a failure that overlaps with the observed failures.
- Predicted failures that are less than 1 day apart are merged

Evaluation

- Early detection: 2 hours before LPS signal is active

Experimental Setup

- Data Chunks
 - Compressor cycles-based approach
 - failures may contain few compressor cycles no alarm after low pass filter.
 - compressor cycles may last until train breaks down no opportunity for early detection.
 - Fixed time-based approach
 - data chunks of 30 min
- Prequential Evaluation
 - train: 1 month = 8674 sequences / test: 2 months = 14591 sequences
- Methods
 - AE + AMRules with ChebyOS

Experimental Setup: Autoencoders

• Long-Short Term Memory Autoenconder (LSTM-AE)

Experimental Setup: Autoencoders

• Temporal Convolution Network Autoencoder (TCN-AE)

Experimental Setup: Autoencoders

• Wasserstein Autoencoders with Generative Adversarial Networks (WAE-GAN)

Experimental Results: Online Failure Detection

LSTM AE

- detects both failures
- does not generate false alarms
- is unable to detect the first failure before the LPS signal.

Experimental Results: Online Failure Detection

TCN-AE

- detects both failures early
- generates two false alarms

- F1 of 0.67

Experimental Results: Online Failure Detection

WAE-GAN

- detects the two failures at least2h before the LPS signal is active
- does not any false alarm
- achieves a perfect F1 score

Experimental Results: Online Explainability

Rules for the 1st failure - Air Leak

- R1: $(H1 \le 8.8 \text{ bar}) \land (\text{Oil Temperature} > 58.5^{\circ}\text{C})$ [Active time: 5.6% prior, 68% during failure.]
- R2: (Oil Temperature > 60.8° C) \land (*TP*2 > 9.2 bar) \land (*Reservoirs* > 9.8 bar) [Active time: 0.3% prior, 0.8% during failure.]
- R3: (Motor Current > 3.8 A) \land (7.0 bar \leq TP2 \leq 7.2 bar) \land (Oil Temperature > 58.5° C) [Active time: 0.01% prior, 7.3% during failure.]

Experimental Results: Online Explainability

Rules for 2nd failure - Oil Leak

- R1: $(65.1^{\circ}C \le Oil \text{ Temperature} \le 71.5^{\circ}C) \land (H1 \le 9.6 \text{ bar}) \land (Reservoirs > 8.8 \text{ bar}) \land (Flowmeter > 0.2m^3/h)$ [Active time: 0.3% prior, 37% during failure.]
- R2: (Oil Temperature > 65.1° C) \land ($H1 > 0 \ bar$) [Active time: 0.8% prior, 48% during failure.]
- R3: (Oil Temperature > 54.6° C) \land (*TP*2 > 9.2 *bar*) [Active time: 2.6% prior, 6.5% during failure.]
- R4: $(Flowmeter > 25m^3/h) \land (Oil Temperature < 95.8^{\circ}C)$ [Active time: 0.01% prior, 9.1% during failure.]

Wrap-up

- Diagnosing failures by modelling time series of sensor data.
- Deep autoencoder architectures with different regularization mechanisms.
- Autoencoder architecture with adversarial regularization achieves requirements of early detection and no false alarms.
- Explainability rules indicate failures are explained by sensors related to problems discovered by maintenance teams.

Online Anomaly Explanation in Predictive Maintenance

Two-layer architecture

- The two learning systems, the deep learning and the rule learning system, are complementary.
- AE works in unsupervised mode using data from the normal behavior.
- The rule learner works in supervised mode, where the target is the reconstruction error of the AE computed in real-time.
- The methodology is general enough to be applied to other online imbalanced streaming scenarios that use black-box models to predict peaks or bursts in events.

References

Aminian, E., Ribeiro, R.P., Gama, J. (2021): Chebyshev approaches for imbalanced data streams regression models. Data Mining and Knowledge Discovery 35, 2389–2466 (2021) <u>https://doi.org/10.1007/s10618-021-00793-1</u>

Davari, N., Veloso, B., Ribeiro, R.P., Pereira, P.M., Gama, J. (2021): Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry. In: DSAA 2021 https://doi.org/10.1109/DSAA53316.2021.9564181

Davari, N., Veloso, B., Ribeiro, R.P., Gama, J. (2022): Fault forecasting using data-driven modeling: A case study for Metro do Porto data set. In IoTStreams Workshop - ECML PKDD 2022 <u>https://doi.org/10.1007/978-3-031-23633-4_26</u>

Davari, N., Veloso, B., Ribeiro, R.P., Gama, J. (2023). MetroPT-3 Dataset. UCI Machine Learning Repository. https://doi.org/10.24432/C5VW3R

Duarte, J, Gama, J., Bifet, A. (2016): Adaptive Model Rules From High-Speed Data Streams. ACM Trans. Knowl. Discov. Data; 2016 <u>https://doi.org/10.1145/2829955</u>

Pashami, S., et al. (2023): Explainable Predictive Maintenance. CoRR abs/2306.05120 (2023) https://doi.org/10.48550/arXiv.2306.05120

References

Ribeiro, R.P., Mastelini, S.M., Davari, N., Aminian, E., Veloso, B., Gama, J. (2022): Online anomaly explanation: A case study on predictive maintenance. In IoTStreams Workshop - ECML PKDD 2022 <u>https://doi.org/10.1007/978-3-031-23633-4_25</u>

Ribeiro, R.P., Moniz, N. (2020) Imbalanced regression and extreme value prediction. Mach Learn 109, 1803–1835 (2020). https://doi.org/10.1007/s10994-020-05900-9

Ribeiro, R.P., Pereira, P., Gama, J. (2016): Sequential anomalies: a study in the railway industry. Machine Learning 105, 127–153 (2016) <u>https://doi.org/10.1007/s10994-016-5584-6</u>

Silva, A., Ribeiro, R.P., Moniz, N. (2022). Model Optimization in Imbalanced Regression. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4 1

Silva, M., Veloso, B., Gama, J. (2023): Predictive Maintenance, Adversarial Autoencoders and Explainability. ECMLPKDD 2023. https://doi.org/10.1007/978-3-031-43430-3_16

Veloso, B., Gama, J., Ribeiro, R., & Pereira, P. (2022). MetroPT2: A Benchmark dataset for predictive maintenance (Version V2) [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.7766691</u>

Artificial Intelligence in Research and Applications Seminar GEIST Research Group - Jan.2024

Online Anomaly Explanation A Case Study in Metro do Porto

Thank you for your attention

Rita P. Ribeiro - rpribeiro@fc.up.pt

eXplainable Predictive Maintenance CHIST-ERA-19-XAI-012