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Local Search

No Improvement

Improvement

Initial Solution Current Solution
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Local Optimum
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2-opt Neighborhood
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Open Problems

Local minima

Neighborhood

Search order

Model layer

Example

Choosing in each move the best neighbor will (almost)
always terminate in a local optimum. We need smarter
strategies (called meta-heuristics) to achieve better
results. Works by Bezerra, López-Ibáñez and Stützle
discuss automatic design of such strategies.
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Open Problems

Local minima

Neighborhood

Search order

Model layer

Example

There are many possible neighborhoods for a given
problem, how to choose the correct one?
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Open Problems

Local minima

Neighborhood

Search order

Model layer

Example

Often neighborhood is too big to be enumerated and we
need to process it partially in an order defined by
heuristic. Very useful in greedy algorithms, quickly
leading to good-enough solutions.
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Domain

Discrete Optimization

Involves many practical problems:

designing warehouse layout

designing circuit boards

task assignment

designing networks, e.g., streets, sewers

nurse scheduling

routing problems
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Research Problem

Goal

Automatic generation of useful
neighborhood operators for given
discrete optimization problems.

Proposed Solution

Defining the neighborhood relation
based on a declarative problem model.
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Representation

Model Typed Constraint Network Neighborhood Operator

▶ Mateusz Ślażyński, Salvador Abreu, Grzegorz J. Nalepa
Towards a Formal Specification of Local Search Neighborhoods From a
Constraint Satisfaction Problem Structure
GECCO, 2019

Mateusz Ślażyński (AGH) Neighborhood Synthesis 14.03.2024 r. 9 / 24



Representation: TSP Example

include "globals.mzn";

int: cities_num = 6;

set of int: City = 1.. cities_num;

array[City] of var City: next;

constraint circuit(next);

there are 6 cities: cities num

an array of next variables, where
next[i] is a city visited after
visiting the i’th city

variables should form a
Hamiltonian cycle (circuit)

next = [2,3,4,5,6,1]
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Representation: TSP Example

int: cities_num = 6;

set of int: City = 1.. cities_num;

array[City] of var City: next;

array[City] of var City: order:: auxiliary = [

if i == 1 then 1

else next[order[i-1]] endif

| i in City

];

constraint forall(i,j in City where i != j)(

next[i] != next[j]

);

constraint forall(i,j in City where i != j)(

order[i] != order[j]

);

constraint forall(i in City)(

next[i] != i

);

next = [2,3,4,5,6,1]

order = [1,2,3,4,5,6]
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Typed Constraint Network

nexti ≠ nextj nexti ≠ i orderi ≠ orderj

Dnext = {1,2,3,4,5,6}

Dorder = {1,2,3,4,5,6}
Inext = {1,2,3,4,5,6}

Iorder = {1,2,3,4,5,6}
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Neighborhood Definition Language

Idea

Declarative programming language designed to define neighborhood operators.
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Neighborhood Definition Language

Idea

Declarative programming language designed to define neighborhood operators.

Features

operates on the data stored in solution and the Typed Constraint Network

non-deterministic — program returns just a single neighbor, but called
many times will explore the whole neighborhood, returning different
neighbor each time

Tuing incomplete — predictable run-time, always terminating
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Neighborhood Definition Language

Selectors

Filters

Modifiers

Higher-Order Operators

Example

Select a single edge fro the TCN, e.g.,
corresponding to a constraint
nexti ̸= nextj .
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Neighborhood Definition Language

Selectors

Filters

Modifiers

Higher-Order Operators

Example

Check whether the two variables do not
represent two consecutive cities:
nexti ̸= j and nextj ̸= i .
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Neighborhood Definition Language

Selectors

Filters

Modifiers

Higher-Order Operators

Example

Assign the current value of nexti to
variable nextj .
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Neighborhood Definition Language

Selectors

Filters

Modifiers

Higher-Order Operators

Example

For every constraint that is violated in
the current solution, select its
corresponding edge and perform a
smaller NDL program.
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NDL — Formal Specification vs Implementations

Figure: Formal definition of a SwapVals operator.

Figure: Formal example of an NDL program.
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NDL — Formal Specification vs Implementations

Figure: Modifier SwapVals defined in the K language.

Figure: NDL program as implemented in the K language.
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NDL — Formal Specification vs Implementations

Figure: The SwapVals operator implemented in Prolog.

Figure: An NDL program implemented in Prolog.
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Operator Synthesis
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Encoder

Neighborhood
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▶ Mateusz Ślażyński, Salvador Abreu, Grzegorz J. Nalepa
Generating Local Search Neighborhood with Synthesized Logic Programs
International Conference on Logic Programming, 2019
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NDL Grammar

Figure: A basic skeleton of a formal grammar defining an NDL program. The red
symbols are to be defined per problem.
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Fitness Criteria

1 The neighborhood should not be
too small.

2 The duplicate neighbors are
unwelcome.

3 If solution satisfies a constraint,
its neighbors also should satisfy
the same constraint.

4 Preferably the neighborhood
operator should modify a varying
number of variables.

Mateusz Ślażyński (AGH) Neighborhood Synthesis 14.03.2024 r. 17 / 24



Fitness Criteria

1 The neighborhood should not be
too small.

2 The duplicate neighbors are
unwelcome.

3 If solution satisfies a constraint,
its neighbors also should satisfy
the same constraint.

4 Preferably the neighborhood
operator should modify a varying
number of variables.
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Example: TSP Neighborhood Synthesis

Training Input

two small instances with 6 and 7 cities.

random distances.

for each instance, three random feasible initial solutions.

Process

parameters: 50 generations, 500 programs each

hardware: 64 CPU Cores and 64GB RAM

duration: 30 minutes

Results

four different neighborhoods matching four fitness functions

including the 2-opt operator, when all the fitness criteria were considered
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Example: 2-opt Operator

1. constraint(all_diff_next, T0, T1) ∧
2. iterate(T3 - T4, T0, (

2.1. constraint(all_diff_next, T4, T1) ∧
2.2. swap_values(T1, T0) ∧
2.3. swap_values(T4, T0)))

Figure: The synthesized 2-opt neighborhood.
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Example: 2-opt Operator
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Examplet: Fitness
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(a) 2-opt
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(b) Basic 3-opt
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(c) 3-swap
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(d) Even swap

Figure: Fitness function improvement in four different experiment runs.
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Summary

Choosing correct Local-Search neighborhood is important to solve difficult
optimization problems.

Using Automated Algorithm Design methods bridges the gap between users
and advanced AI systems.

I have presented a prototype AAD system to find useful neighborhoods
given a declarative model of the considered problem.

Future research:

experiments on other synthesis algorithms;
an efficient (low-level) implementation of the system;
including meta-heuristics and heuristics in the process;
implementing more effective over-fitting countermeasures.
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Mateusz Ślażyński (AGH) Neighborhood Synthesis 14.03.2024 r. 22 / 24



Related Papers
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Thanks

Thank you for your attention!
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