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Motivation (XAl)
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Today

* Why did you do that?

. Decisionor * Why nol something else?
Training Ma::h!ne Learned Racummandmnn__ * Whendo you succead?
Data Learning Function ' = Whendo you fail?
Process + Whencan | trust you?
= How do | cormect an ermor?
XAl Task
x + | understand why
N NE:"-TF ) _ + | understand why not
Training Machine N Explainable | Explanation « | kg when you succeed
Data Learning Model Interface * | know when you fail
Process « | know when to trust you
* | kmow why you emed
User
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https://tensor-solutions.com/explainable-ai
https://www.geeksforgeeks.org/explainable-artificial-intelligencexai/
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Explainability vs Interpretability

Interpretability refers to the visibility and understanding of
the inner logic and mechanics of the Al model.

Explainability is the ability to describe the behavior of a
system in an understandable medium to humans.
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XAl Framework Overview
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Each component supports the
broader goal of explainability,
allowing Al systems to generate
insights that align with technical
demands and user requirements.

XAl framework:

1. Human-centered design
2. Factors in development
3. Components and tasks



Human-centered design

Users are the recipients of the system (in
most cases)

The human-centered approach focuses on
the what, when, and how to explain things

to human end users through the
explanation process that involves the users

in the development process.
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Factors in development

|. Domain Analysis and Requirements

End Users

Knowledge Sources
Actionability

Ethical Considerations
Inputs and Outputs
Assessments
Reusability

Il. Multi-modal Interaction and Human-Centered Design

Coverage
Personal Preferences
Usability Testing
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Components and tasks -
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Explainers

Explainers
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Ante-hoc

Explainers

Post-hoc
Explainers
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Instance-based Explainers
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Instance-based Explainers

NLN: Nearest Like Neighbour
NUN: Nearest Unlike Neighbour

Counterfactual Explanations: Generate hypothetical scenarios to
describe how changing the input features can alter the prediction.

Semifactual Explanations: Suggest that even with changes in
certain attributes, the model’s outcome would remain the same.
"even if... still..." scenarios

Alterfactual Explanations: Demonstrate the irrelevance of certain
features by proposing changes that do not alter the model
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Costumer

Why is my application
rejected?

E)(pL AlNER

Trustworthi- Globality
ness Locality

Transparency Requirements Flexibility

Domain Understand-
Knowledge ability Qualitative User

Evaluations Evaluations
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Case-Based Reasoning (CBR)

CBR is a problem-solving methodology that uses past experiences to
address new problems.

CBR operates through a four-step cycle: P

Case

1. Retrieve: Identify and retrieve the most relevant past cases from the case base.

2.  Reuse: Adapt the retrieved case(s) to solve the new problem.
3. Revise: Test the proposed solution and refine it if necessary.
4.

Retain: Store the new case and solution in the case base for future use.

Revised Proposed

Case

T
Confirmed Proposed
Solution Solution
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XCBR

« CBRis a flexible and interpretable

methodology.

» Itis used to explain Al models
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https://gaia.fdi.ucm.es/research/excbr/

XAl

Techniques
to explain
Al models

echniques
to explain
CBR

XCBR

CBR to explain
other Al models




Evaluation

-

Subjective metrics
(human-based)

XAl
evaluation
metrics

Objective metrics

o

Randomly selected persons

D N

Domain experts
Metrics for example-based methods

Specific metrics
(method or task Metrics for counterfactual explanations
related)
E.g. Metrics in recommendation systems
Attribution-based metrics / Perturbation-based
metrics
Model-related
metrics Model performance

Subjective Evaluation

» User Satisfaction
« Comprehensibility
* Trustworthiness

« Actionability

Model trustworthiness (E.g. consistency, stability)
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Objective Evaluation

* Fidelity

« Stability

* Proximity

» Comprehensiveness
« Sufficiency
 Sparsity

Coroama, Loredana, and Adrian Groza. "Evaluation metrics in explainable artificial intelligence (XAI)." International conference
on advanced research in technologies, information, innovation and sustainability Cham: Springer Nature Switzerland, 2022.
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Focus

Explainers
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My Ph.D.

Knowledge Flow Design Steps
Phase 1 Problem identification
A J
Phate 2 Design and
developement
v
Phass 3 Demonstrat!on
and evaluation
A J
Phase 4 Communication
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Outputs

Proposal

Proposed approaches
and methods

Performance
measures

Results and
knowledge transfers
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Research questions

Research  RQ1: Domain Knowledge
Questions and Design

RQ2:. Generating plausible
explanations

RQ3: Improving
comprehensibility
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RQZ2.1: High-quality
counterfactuals

RQ2.2: Multimodel
counterfactuals

RQ3.1: Instance-based
explanations

RQ3.2: Evaluating explanations



Research questions - contributions

Research Questions P.1 | P11 | PIII | PAIV]| PV
RQ 1: Domain Knowledge and Design x | * ¥
RQ 2: Generating RQ 2.1: High-quality N N
Plausible Explanations Counterfactuals
RQ 2.2: Multimodal .
Counterfactuals
RQ 3: Improving PB{Q 3.1: Instance- y N - -
Comprehensibility ased Explan&tlf)ns
RQ 3.2: Evaluating " -
Explanations
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Paper 1. When to Explain?

A model-agnostic XCBR framework that selectively
triggers explanations

N 4 A

Black-Box
Model

(a) (b) (c)
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Paper 1. When to Explain?

Explanation Case #324
s: <f1, f2, ..., fn, label=
cf: <fi, f2, . . ., fa, ~label=
0.4 . fl

o
[

=
[¥]

| Difference
o o o
= =} P~

|
o
[N]

I
CF-1 CF-2 CF-3

CF-4

1.

Store Data: Maintain a case base with pairs
of samples and their counterfactuals.

Retrieve Pair: Identify the most similar
sample-counterfactual pair.

Show Differences: Highlight key differences
between the sample and counterfactual to
provide actionable insights.

Visualization: Use a combination of a bi-
directional bar graph and text annotations
to present the results effectively.

" The prediction result is the same with 4 out of 4 closest samples.
However, the sample is at risk; in similar cases, when the fl feature

increases by 0.14 and f2 decreases by 0.05, decisions change. '
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Paper 1. Contributions

Research [RQ1: Domain Knowledge
Questions Jand Design

RQ2: Generating plausible  RQ2.1: High-quality
explanations counterfactuals

RQ2.2: Multimodel
counterfactuals

RQ3: Improving RQ3.1: Instance-based
comprehensibility explanations

RQ3.2: Evaluating explanations
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Paper2 - A Twin XCBR System Using Supportive and
Contrastive Explanations .. case e Model global similarity metrics

arlty metrics

Integrate domain knowledge m

Model

Data-driven
similarity modeling

Expert
Knowledge

Shap values per
feature/class

|
K Iocal sim cases global sim
— class O

Expert knowle
incorporated in
- Datalev




Paper2 - A Twin XCBR System Using Supportive and
Contrastive Explanations

X x+y e »

Explainer
[+ =] T~] [ [a]-[=]v]
Black-Box
Model

v v
e case_9 091 case_4 0.90
case_3 0.89 case_b 0.83
case_8 0.78 case_1 0.79

» Class Comparison «

Ld v

Supportive Contrastive

case_93 0.94 [l case_34 0.93

Instance-based
supportive or

contrastive
explanation

case_33 0.92 case_54 0.91

case_65 0.89

case_82 0.91
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Paper2 - A Twin XCBR System Using Supportive and
Contrastive Explanations

Use-case 1.
Depression Screening

Use-case 2.
App Usage

5]

supporlt = —

n
rigidity = |1 —

acc

n : Number of test instances

|S]| : Number of supported predictions
acc : Accuracy score

@ NTNU |

support

Use-case 3
Wine Quality

Norwegian University of
Science and Technology

accuracy | support | rigidity
Use-case 1 0.24 0.476 0.984
Use-case 2 0.58 0.696 0.199
Use-case 3 0.77 0.9897 0.2197
Use-case 3: Wine Quality
1.0 0/\
\'//,”/*
0.8 >(—_’_/_)(__f_)(/x____x
0.6 —»— Accuracy score
—&— Support score
—¥— Rigidity score
0.4
0.2 v/\\/J
KNe-\glhbofS M{_P 5 eds'\:)nTreeGrad.\ entlaoost'm%\ - dorlnporest 33



Paper 2. Contributions

Research [RQ1: Domain Knowledge
Questions Jand Design

RQ2: Generating plausible  RQ2.1: High-quality
explanations counterfactuals

RQ2.2: Multimodel
counterfactuals

RQ3: Improving RQ3.1: Instance-based
comprehensibility explanations

RQ3.2: Evaluating explanations
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Paper3 - PertCF: A Perturbation-Based Counterfactual
Generation Approach

..........
- -
-

NUN-*

(a) (b)
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(c) (d)



PertCF: a perturbation based CF generation approach
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PertCF: a perturbation based CF generation approach
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PertCF: a perturbation based CF generation approach
» Perturb ‘X’ to generate candidate ¢,
» SHAP (SHapley Additive exPlanations)
‘—--------.-§~
L 4
. \
o’ ~ NUN ,
- ' P
4 |
P X (\ . P
‘ T
. ,-"
.
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A PertCF: a perturbation based CF generation approach
* Perturb X’ to generate candidate c;
» SHAP (SHapley Additive exPlanations)

Ci = <Ciy Ciz =" Cjy” _
Cio= S, shap_target, * dist(t,,S,)

S: source
t: target
class 0
class 1
0.4 1 class 2
class 3
0.3
v
2
S 027
0.1 1
0.0 T
. © © = x ©
& & n S &
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PertCF: a perturbation based CF generation approach
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PertCF: a perturbation based CF generation approach

Termination criteria:
1. Number of iterations
2. Distance between the last two candidate

B NTNU | scenctand Technology
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Paper3 - PertCF

model
08 CFshap
B [DICE
PertCF
0E
5 0.4
Dissim. Sparsity Instability Time
South German Credit 024
DICE 0.055744  0.911053 0.056013 0.073553 . - - m
CFshap 0.255488  0.584211  0.255525 0.005750 © dssimiaity  sparsity  stabilty fime
PertCF  0.051702 0.798246  0.051817 0.406937 Metric
User Knowledge Modeling model
06 o
DICE  0.172721 0.642276 0.176896 0.117947 =i
CFshap 0.179172  0.029268  0.180618 0.001123 057 PertCF
PertCF  0.063630 0.058537  0.066436 0.282734 041
EO.S—
0.2
01 I
0.0 .
dissimilarity sparsity nstability time
Metric
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Paper 3. Contributions

Research  RQ1: Domain Knowledge
Questions and Design

RQ2: Generating plausible | RQ2.1: High-quality
explanations counterfactuals

RQ2.2: Multimodel
counterfactuals

RQ3: Improving RQ3.1: Instance-based

comprehensibility explanations
RQ3.2: Evaluating explanations
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Paper4 - Evaluation of Instance-based Explanations: An In-depth Analysis of
Counterfactual Evaluation Metrics, Challenges, and the CEval Toolkit

. Motivation:
— Confusion in Literature
— Benchmarking Needs

— Lack of Open-Source Tools

« Contributions:
— CEval Toolkit: An open-source platform for evaluating and optimizing instance-based explanations.
— Customizable Framework: Adaptable for different datasets and user needs.

— Focus on Optimization: Integrates methods to enhance explanation quality.

. Impact:
— Provides clarity in evaluating instance-based explanations.
— Bridges technical evaluation with user-centric goals.

— Serves as a benchmark for future XAl systems.
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validity = % ) FS
i=1

. 1,
proximity = — Z dist (x, x|

sparsity = — Z Z 1 alia,
1—1 j=1

number _of _explanations = |e|

diversity_dpp = det(K)

u N . .
lecc = = diversity,.. = lcc = diversity_dpp
Lo
NN = ﬁz Z L=y
i=1 kNN (x/)
Seasibility = Z Z dist (x}, )
i=1 y, EkNN (x!

. 1\ o
kNLN _distance = pors Z Z dist (x;,9;)
i=1 9;EkNLN (x/)
dist(x!,x)

ltive_dist - dist(NUN (x),x)
realtive_distance ~ dist(NUN (x), x)

redundancy =

|S| ZZ ]lf(‘r (x! x,5))=z

i=1 se§

1 m
robustness = — E dist(e;, explain(P(x)))
m
i=1

dist (x!,NLN (x]))

plausibility =~ ; dist(NLN (x]), NUN (NLN (x})))

coverage = ‘X| Z Li¢j>0, € = explain(x)

xeX

S upp

rigidity = ‘ 1 acc

discriminative power
vulnerability
computational complexity

constraint violation
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TABLE 1. Unified Notation for the Rest of the Article

Symbol Description

X An instance to explain, x =< ay, ...,a, >.
P The number of attributes.

Set of instances to explain, x € X.
0 Prediction function.

Prediction result for x, y = f (x)

an instance.

e Set of counterfactuals for x, ¢ = explain(x) and e
{e1,...,em}-

m Number of counterfactuals that are provided for x.

& e ={x{,z}, ¢ €e

x] x =< a’lf,...,ag>

Zi z = f(x])

Uz The number of unique class labels for the counterfactuals
generated for x.

1 The number of unique class labels.

R; Range of j* attribute.

k Number of neighbours.

kNN () kNN (x) finds k Nearest Neighbours to x.

neighbour which is labelled different than x.

dist()* Distance function, quantifies the distance between two
instances.

P()* Perturbation function, P(x) returns perturbed/corrupted
version of x, xP.

7() 7(x!, x, ) copies j* attribute of x to j** attribute of x/ and
returns x; .

A A:{l,2,...,p}

A All subsets of A that have I elements. [A]? =
a,b € A,a # b}

S All possﬂJle subsets ( Fower set) of A without @ and A
(super set) S U A

S| IS =

() (%, x s) coples s attributes of x to s attribute of x; and
returns x}’ .

* These functions can be implemented in different ways.

explain() | Explanation function, returns a set of counterfactuals for

kKNLN () kNLN (x) finds k Nearest Like Neighbours to x.
NUN() Nearest Unlike Neighbour, NUN (x) returns the nearest




TABLE 2. Evaluation metrics for instance-based explanations

Applicable

Reg

juires

Generated | Existed | Single | Multi | Data | Model Short Description

Validity | X X X X - X Whether the decision was altered.

Proximity | X X X X - - Mean of feature-wise distance between the instance and its
counterfactuals.

Sparsity ! X X X X - - Mean number of altered features between the instance and its
counterfactuals.

Number of counter- X X - X - - Number of counterfactuals generated for an instance.

factuals !

Diversity ! X X - X - - Mean proximity between counterfactuals.

Diversity i ! X X - X b - Diversity with class coverage coefficient.

yNN ! X X X X X X Amount of support counterfactuals receive from positively clas-
sified background data.

Feasibility 1 X X X X X - Mean proximity of the counterfactuals to their nearest observa-
tions in the background data.

KNLN Distance ! b X X X X - Mean distance of counterfactuals to their k-NLN.

Relative Distance ! b - X X X - The ratio of the mean distance between the instance and coun-
terfactuals to the mean distance between the instance and its
NUN.

Redundancy X X X X - X Mean count of unnecessary feature changes.

Robustness X - X X X X Mean proximity between the explanation of the instance and
the explanation of a slightly corrupted version of the instance.

Plausibility X - X X X - The degree of credibility in the context.

Discriminative Power X X - X X - The ability to differentiate two distinct classes through a naive
approach.

Vulnerability X - X X X - The extent of susceptibility to manipulations.

Complexity X X X X X X Cost for the explainer to generate a single explanation.

Constraints X X X X - - Mean count of violated pre-defined constraints.

Coverage X X X X - - The ability to generate valid counterfactuals across various
types of instances.

IThis metric is implemented in the package.

@ NTNU |
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Paper 4. Contributions

Research  RQ1: Domain Knowledge
Questions and Design

RQ2: Generating plausible | RQ2.1: High-quality
explanations counterfactuals

RQ2.2: Multimodel
counterfactuals

RQ3.1: Instance-based
explanations
RQ3.2: Evaluating explanations

RQ3: Improving
comprehensibility
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Paper5 - An Empirical Analysis of User
Preferences Regarding XAl metrics

« Motivation:

« Understanding user preferences is crucial for designing effective
XAl systems.

« Aneed to bridge the gap between technical metrics and user-
centric needs.
« Aim:
« Conduct an empirical study to evaluate which XAl metrics align
with user priorities.
* Provide actionable insights for improving XAl frameworks.

B NTNU | scenctand Technology 49



VarGrad Rise

GradCAMPP Sobol HSIC

e-based

Oriainal imaae

Occlusion

ntributions:

pirical Analysis: Quantifies user
—preferences for common XAl metrics

(e.g., interpretability, fidelity, robustness).

2. Insights on Trade-offs: Highlights trade-
g offs between technical metrics and user
This image has been classified as a(n) S atlsfactl On .
OBELISK . . . H
3. Guidelines for XAl Design: Provides
Please, according to your own criteria, click on the approach that best explains this classification from the options below.

recommendations to align technical and
user-centric goals.

HmioanpIic vuuineriavwuaimn
Onginal image CF bell-cot ¥

CF- bell-cot
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Papers

- 1.0 >

VarGrad - 1 0.91
Rise - 0.89 0.83
GradCAMPP - 0.8 0.87
- 0.8
HsicAttributionMethod - 0.8 0.86 >
SquareGrad - 0.79 0.91

SobolAttributionMethod ‘lr
SmoothGrad
KernelShap

Lime

GuidedBackprop
Gradientinput
IntegratedGradients
Saliency

Occlusion

Selection Ratio Insertion Deletion MuFidelity Stability

Selection Ratio - 1 -0.034 0.32 0.33

NearestNeighbours - 1
SSIMNearestNeighbours -
InSampleCFs

Divelr5|ty

Selection Ratio Sparsity

Selection Ratio - 1 0.81 -0.97

Some of the objective evaluation
metrics align better with user
preferences.

Metrics such as insertion and
sparsity are good predictors of user
satisfaction (for this specific task).

Novice users prefer instance-based
explanations.

Expert users prefer feature-based
explanations.

Explanation representation
MATTERS.

Objective + Subjective Evaluation

52



Paper 5. Contributions

Research
Questions

@ NTNU |

RQ1:. Domain Knowledge
and Design

RQ2: Generating plausible  RQ2.1: High-quality

counterfactuals
RQ2.2: Multimodel
counterfactuals
RQ3.1: Instance-based
explanations

RQ3.2: Evaluating explanations

explanations

RQ3: Improving
comprehensibility
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Contributions - overall

Research Questions P-m P-11 | P-III
RQ 1: Domain Knowledge and Design *- - * .
RQ 2: Generating RQ 2.1: High-quality N
Plausible Explanations Counterfactuals
RQ 2.2: Multimodal
Counterfactuals
RQ 3.1: Instance- N N

RQ 3: Improving

Comprehensibility Based Explanations

RQ 3.2: Evaluating
Explanations
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Limitations

Human-in-the-Loop Challenges:
— Reliance on human evaluation introduces biases and subjectivity.
— Balancing objective metrics with user feedback remains complex.

Multi-Modality Constraints:
— Current methods focus on single or limited number of data types (e.g., tabular, image).
— Limited application to real-world multimodal data (e.g., text, audio, video).

Scalability Issues: High computational demands restrict application to large datasets and real-
time systems.

Obéective Mismatch: Misalignment between stakeholder needs (users, developers, regulators)
and explanation goals.

Customization Gaps: Current metrics do not align with user preferences for tailored, flexible
explanations.

Empirical Validation: Limited generalizability to diverse domains and broader user groups.

B NTNU | scenctand Technology 55



Future Directions

Scalability and Efficiency

Multimodal Explainability

Automated and Adaptive
Explanations

Human-Centered XAl

Integration with Emerging Trends

B NTNU | scenctand Technology

Develop algorithms for scalable, real-time
explanations with minimal computational overhead.

Extend methods to handle diverse data types and
cross-modal relationships.

Create systems that adapt explanations to user
expertise and preferences in real time.

Incorporate participatory design approaches and
longitudinal studies to refine explanations.

Adapt XAl methods for transformers, LLMs, and
conversational Al applications.

56



Conclusion
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Conclusion

Advancing Instance-
Based Explanations:

Bridging Human and
Machine Understanding:

Comprehensive
Evaluation Frameworks:
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 Developed innovative methods for generating and evaluating
Instance-based explanations, particularly counterfactuals.

» Focused on human-centered design to align Al explanations
with user needs, fostering trust and usability.

* Proposed and implemented metrics and toolkits like CEval to
assess and optimize XAl techniques effectively.

» Enhanced understanding of trade-offs between technical
metrics and user preferences, providing actionable insights for
future research.
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