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Motivation (XAI)

https: //tensor-solutions.com/explainable-ai
https: //www.geeksforgeeks.org/explainable-artificial-intelligencexai/

https://tensor-solutions.com/explainable-ai
https://www.geeksforgeeks.org/explainable-artificial-intelligencexai/
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Explainability vs Interpretability

Interpretability refers to the visibility and understanding of 
the inner logic and mechanics of the AI model.

Explainability is the ability to describe the behavior of a 
system in an understandable medium to humans. 



XAI Framework Overview

Each component supports the 
broader goal of explainability, 
allowing AI systems to generate 
insights that align with technical 
demands and user requirements. 

XAI framework:
1. Human-centered design

2. Factors in development

3. Components and tasks
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Human-centered design

Users are the recipients of the system (in 
most cases)

The human-centered approach focuses on 
the what, when, and how to explain things 
to human end users through the 
explanation process that involves the users 
in the development process. 
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Factors in development

I. Domain Analysis and Requirements
• End Users

• Knowledge Sources

• Actionability

• Ethical Considerations

• Inputs and Outputs

• Assessments

• Reusability

II. Multi-modal Interaction and Human-Centered Design
• Coverage

• Personal Preferences

• Usability Testing
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Components and tasks

I. Components
- AI model

- Data sources

- Stakeholders

- Post-hoc Explainers

- Evaluator

II. Tasks
- Preparing data

- Enhancing model interpretability

- Developing post-hoc explainers

- Evaluating explanations/explainers
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Explainers
Explainers Ante-hoc 

Explainers

Decision Trees

Generalized Additive 
Models (GAMs

Bayesian Rule Lists 
(BRLs)

Linear Models & Logistic 
Regression

Post-hoc 
Explainers

Instance-Based Explainers
Counterfactuals

Semifactuals

Alterfactuals

Prototypes & Critic isms

Attribution-Based 
Explainers

SHAP

Integrated Gradients

Grad-CAM

Saliency Maps

Rule-Based Explainers
Anchors

Decision rules

Visualization-Based 
Explainers

PDPs: Marginal effect of features

ICE Plots

ALE Plots
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Instance-based Explainers

NLN: Nearest Like Neighbour

NUN: Nearest Unlike Neighbour 
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Instance-based Explainers

• NLN: Nearest Like Neighbour

• NUN: Nearest Unlike Neighbour

• Counterfactual Explanations: Generate hypothetical scenarios to

describe how changing the input features can alter the prediction.

• Semifactual Explanations: Suggest that even with changes in

certain attributes, the model’s outcome would remain the same.

"even if... still..." scenarios

• Alterfactual Explanations: Demonstrate the irrelevance of certain

features by proposing changes that do not alter the model
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Case-Based Reasoning (CBR)
CBR is a problem-solving methodology that uses past experiences to 
address new problems.

CBR operates through a four-step cycle: 

1. Retrieve: Identify and retrieve the most relevant past cases from the case base.

2. Reuse: Adapt the retrieved case(s) to solve the new problem.

3. Revise: Test the proposed solution and refine it if necessary.

4. Retain: Store the new case and solution in the case base for future use.
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XCBR

• CBR is a flexible and interpretable 

methodology.

• It is used to explain AI models

https: //gaia.fdi.ucm.es/research/excbr/



Evaluation

• User Satisfaction

• Comprehensibility

• Trustworthiness

• Actionability

Subjective Evaluation 

• Fidelity

• Stability

• Proximity

• Comprehensiveness

• Sufficiency

• Sparsity

Objective Evaluation 

Coroama, Loredana, and Adrian Groza. "Evaluation metrics in explainable artificia l intelligence (XAI) ." International conference 

on advanced research in technologies, in formation, innovation and sustainability. Cham: Springer Nature Switzer land, 2022.
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Focus
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Explainers Ante-hoc 
Explainers

Decision Trees

Generalized Additive 
Models (GAMs

Bayesian Rule Lists 
(BRLs)

Linear Models & Logistic 
Regression

Post-hoc 
Explainers

Instance-Based Explainers
Counterfactuals

Semifactuals

Alterfactuals

Prototypes & Critic isms

Attribution-Based 
Explainers

SHAP

Integrated Gradients

Grad-CAM

Saliency Maps

Rule-Based Explainers
Anchors

Decision rules

Visualization-Based 
Explainers

PDPs: Marginal effect of features

ICE Plots
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My Ph.D.
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Research questions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 
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Research questions - contributions



Paper 1: When to Explain? 

• A model-agnostic XCBR framework that selectively

triggers explanations
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Paper 1: When to Explain? 
1. Store Data: Maintain a case base with pairs 

of samples and their counterfactuals.

2. Retrieve Pair: Identify the most similar 

sample-counterfactual pair.

3. Show Differences: Highlight key differences 

between the sample and counterfactual to 

provide actionable insights.

4. Visualization: Use a combination of a bi-

directional bar graph and text annotations

to present the results effectively.
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Paper 1: Contributions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 
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Create case bases

Import cases
Model local similarity metrics

Model global similarity metrics

Integrate domain knowledge

Expert knowledge can be 

incorporated in two levels:

- Data level

- Similarity measurement level

Paper2 - A Twin XCBR System Using Supportive and 

Contrastive Explanations 



Paper2 - A Twin XCBR System Using Supportive and 

Contrastive Explanations 
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Use-case 1: 

Depression Screening

Real-world data

3 classes

105 instances

102 features

Unbalanced

Data level DK

Use-case 2:

App Usage

Real-world data

3 classes

230 instances

26 features

Unbalanced

Similarity level DK

Use-case 3:

Wine Quality

Open data

3 classes

4898 instances

12 features

Unbalanced

No DK

Use-case 3: Wine Quality

n : Number of test instances

|S| : Number of supported predictions

acc : Accuracy score

Paper2 - A Twin XCBR System Using Supportive and 

Contrastive Explanations 



Paper 2: Contributions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 



Paper3 - PertCF: A Perturbation-Based Counterfactual 

Generation Approach

• Perturbation-based explanation

• Iterative process

• Plausible and actionable  

counterfactuals

35



PertCF: a perturbation based CF generation approach



PertCF: a perturbation based CF generation approach



• Perturb ‘x’ to generate candidate c1

• SHAP (SHapley Additive exPlanations)

PertCF: a perturbation based CF generation approach



• Perturb ‘x’ to generate candidate c1

• SHAP (SHapley Additive exPlanations)

PertCF: a perturbation based CF generation approach

ci = <ci1
, ci2

, … , cim>
cia = sa + shap_targeta * dist(ta,sa)

s: source

t: target 



PertCF: a perturbation based CF generation approach



Termination criteria:

1. Number of iterations

2. Distance between the last two candidate

PertCF: a perturbation based CF generation approach





Paper3 - PertCF



Paper 3: Contributions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 
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• Motivation:

– Confusion in Literature

– Benchmarking Needs

– Lack of Open-Source Tools

• Contributions:

– CEval Toolkit: An open-source platform for evaluating and optimizing instance-based explanations.

– Customizable Framework: Adaptable for different datasets and user needs.

– Focus on Optimization: Integrates methods to enhance explanation quality.

• Impact: 

– Provides clarity in evaluating instance-based explanations.

– Bridges technical evaluation with user-centric goals.

– Serves as a benchmark for future XAI systems.

Paper4 - Evaluation of Instance-based Explanations: An In-depth Analysis of 
Counterfactual Evaluation Metrics, Challenges, and the CEval Toolkit 
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Metrics

discriminative power 

vulnerability 

computational complexity 

constraint violation 
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Paper 4: Contributions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 



Paper5 - An Empirical Analysis of User 

Preferences Regarding XAI metrics 

• Motivation:
• Understanding user preferences is crucial for designing effective 

XAI systems.

• A need to bridge the gap between technical metrics and user-
centric needs.

• Aim:
• Conduct an empirical study to evaluate which XAI metrics align 

with user priorities.

• Provide actionable insights for improving XAI frameworks.
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Paper5

Key Contributions:

1. Empirical Analysis: Quantifies user 
preferences for common XAI metrics 
(e.g., interpretability, fidelity, robustness).

2. Insights on Trade-offs: Highlights trade-
offs between technical metrics and user 
satisfaction.

3. Guidelines for XAI Design: Provides 
recommendations to align technical and 
user-centric goals.



Paper5
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➢ Some of the objective evaluation 

metrics align better with user 
preferences.

➢ Metrics such as insertion and 
sparsity are good predictors of user 

satisfaction (for this specific task).

➢ Novice users prefer instance-based 

explanations.

➢ Expert users prefer feature-based 
explanations.

➢ Explanation representation
MATTERS.

➢ Objective + Subjective Evaluation

Paper5



Paper 5: Contributions

Research 
Questions

RQ1: Domain Knowledge 
and Design 

RQ2: Generating plausible 
explanations 

RQ2.1: High-quality 
counterfactuals 

RQ2.2: Multimodel 
counterfactuals 

RQ3: Improving 
comprehensibility 

RQ3.1: Instance-based 
explanations 

RQ3.2: Evaluating explanations 



Contributions - overall
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• Human-in-the-Loop Challenges:
– Reliance on human evaluation introduces biases and subjectivity.
– Balancing objective metrics with user feedback remains complex.

• Multi-Modality Constraints:
– Current methods focus on single or limited number of data types (e.g., tabular, image).
– Limited application to real-world multimodal data (e.g., text, audio, video).

• Scalability Issues: High computational demands restrict application to large datasets and real-
time systems.

• Objective Mismatch: Misalignment between stakeholder needs (users, developers, regulators) 
and explanation goals.

• Customization Gaps: Current metrics do not align with user preferences for tailored, flexible 
explanations.

• Empirical Validation: Limited generalizability to diverse domains and broader user groups.

Limitations
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Future Directions

Scalability and Efficiency
Develop algorithms for scalable, real-time 
explanations with minimal computational overhead.

Multimodal Explainability
Extend methods to handle diverse data types and 
cross-modal relationships.

Automated and Adaptive 
Explanations

Create systems that adapt explanations to user 
expertise and preferences in real time.

Human-Centered XAI
Incorporate participatory design approaches and 
longitudinal studies to refine explanations.

Integration with Emerging Trends
Adapt XAI methods for transformers, LLMs, and 
conversational AI applications.



Conclusion
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• Developed innovative methods for generating and evaluating 
instance-based explanations, particularly counterfactuals.

Advancing Instance-
Based Explanations:

• Focused on human-centered design to align AI explanations 
with user needs, fostering trust and usability.

Bridging Human and 
Machine Understanding:

• Proposed and implemented metrics and toolkits like CEval to 
assess and optimize XAI techniques effectively.

Comprehensive 
Evaluation Frameworks:

• Enhanced understanding of trade-offs between technical 
metrics and user preferences, providing actionable insights for 
future research.

Contribution to XAI 
Literature:

Conclusion



Betül Bayrak

betul.bayrak@ntnu.no

Thank you for your attention ☺
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