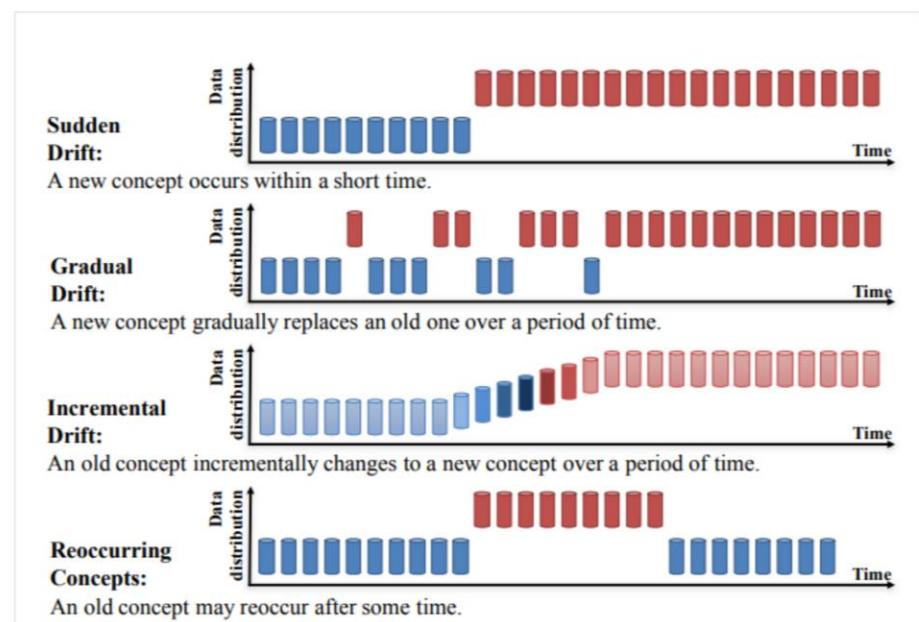
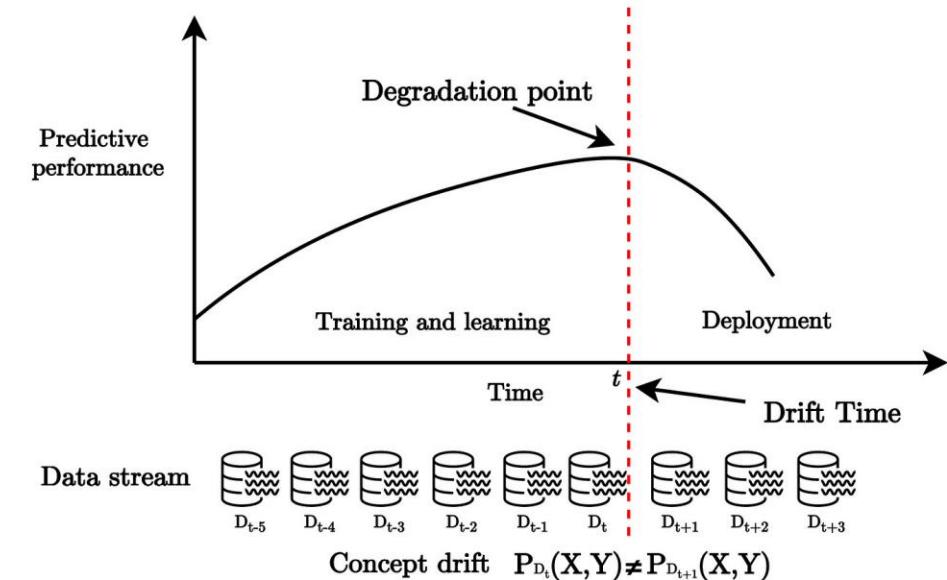


Calm-Data Generator: A Flexible Framework for Synthetic Dataset Creation Under Concept Drift

ANTONIO GUILLÉN TERUEL

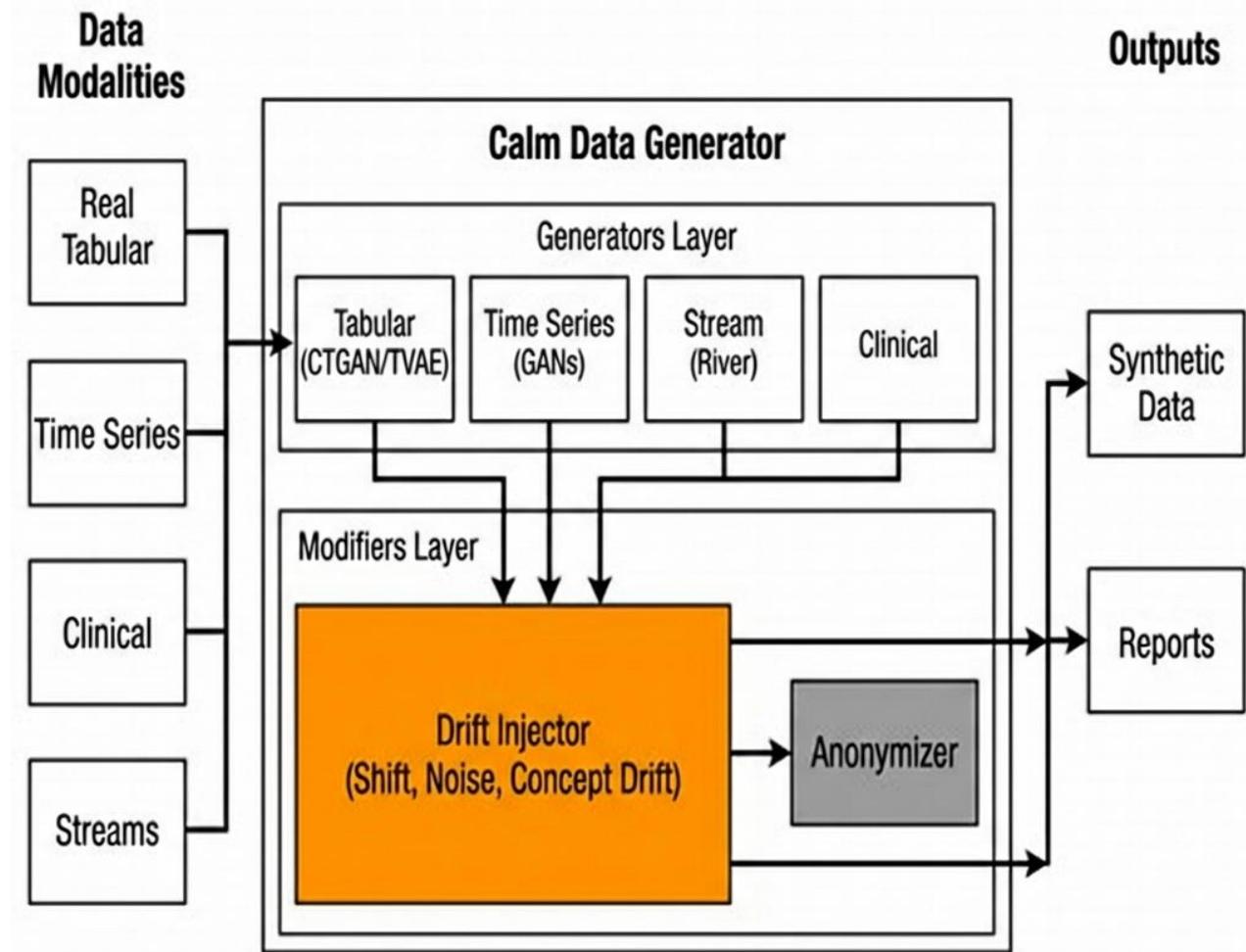


UNIVERSIDAD
DE MURCIA

Topics

- Background: Concept Drift, Data generation
- Methodology: Architecture and Design
- Results
 - Real data simulator
 - Drift injector
 - Synthetic Clinical data: Genes and Proteins
- To do

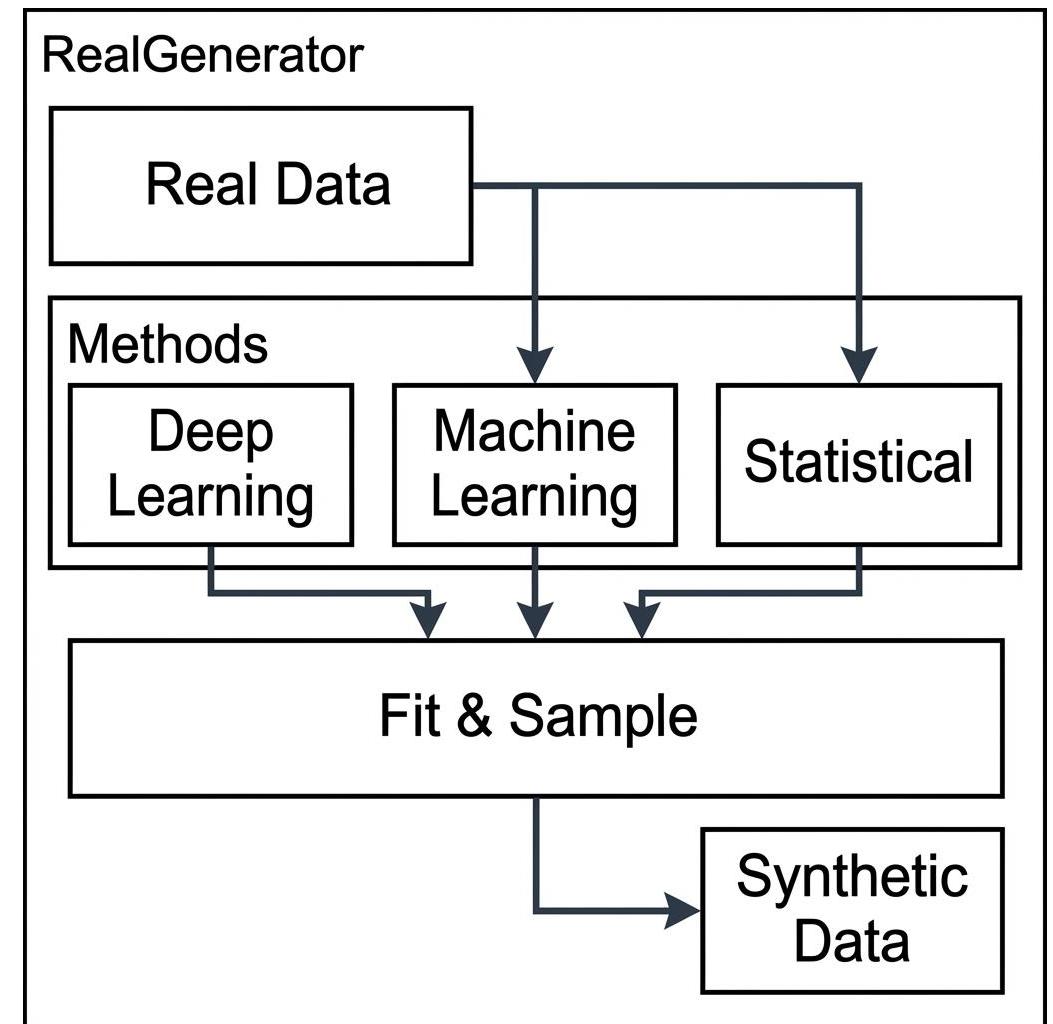
Concept Drift

- Change in the distribution of our data over time.
- Very common problem when a model goes into production.
- Problem: Identify and deal with it



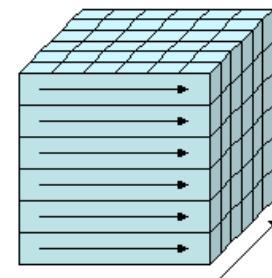
Data generation: Why simulate data?

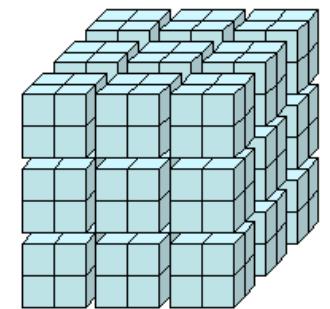
- **Real data is hard to share**
- **You rarely get "ground truth" drift**
- **Fair benchmarking needs control:** to compare drift detectors/adaptation methods, you need datasets where you can control
- **Reproducibility:** synthetic generators allow exact re-runs, ablations, and sensitivity analyses
- **Stress-testing models:** simulate rare events, extreme imbalance, or feature shifts that are underrepresented in collected data
- **Domain realism:** generate biomedical-like tabular data (e.g., genes/proteins/clinical variables) while keeping interpretability and drift injection feasible.


Methodology: Architecture overview

- Unified framework to generate synthetic data from different modalities
- Two main layers: Generators and modifier layers
- Outputs: synthetic datasets + reports

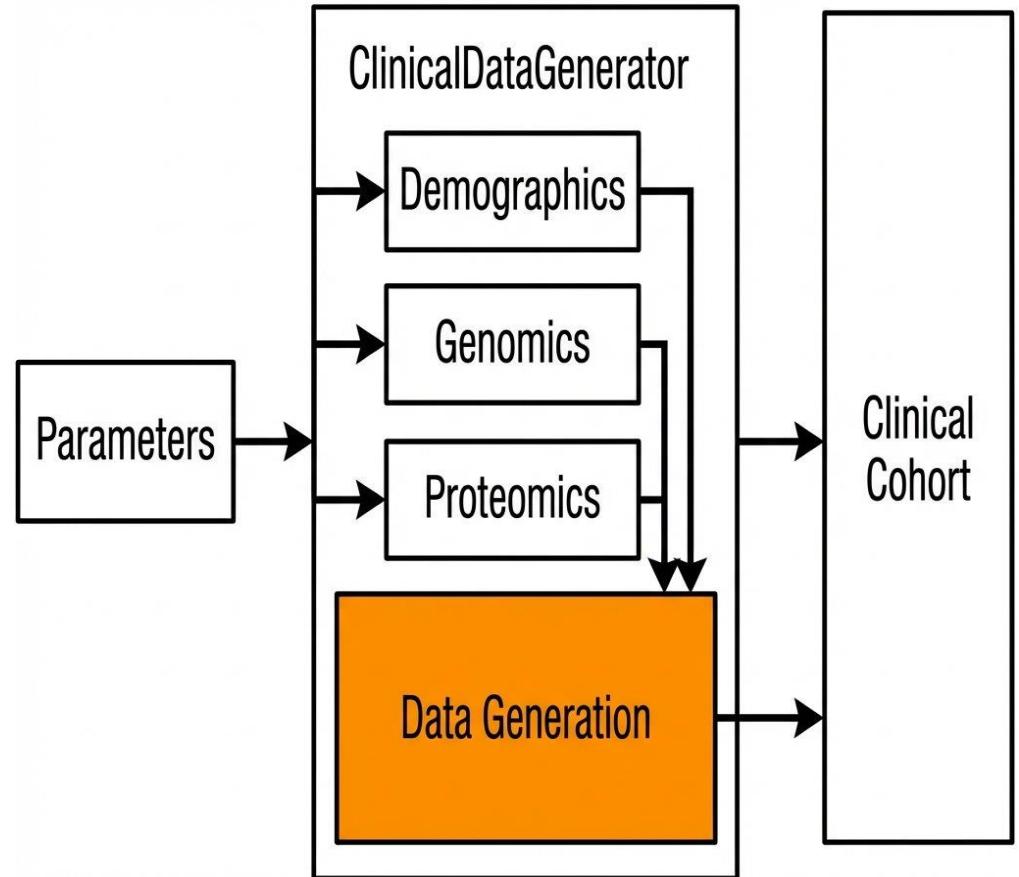
Methodology: Real tabular data generator


- Input: Real tabular data previously curated
- Several simulators:
 - TVAE, CTGAN, ...: Deep Learning Methods (*sdv library*)
 - CART (Decision trees), Random Forest: ML Methods
- Fit on real data → Sample strategy
- Synthetic data: Report

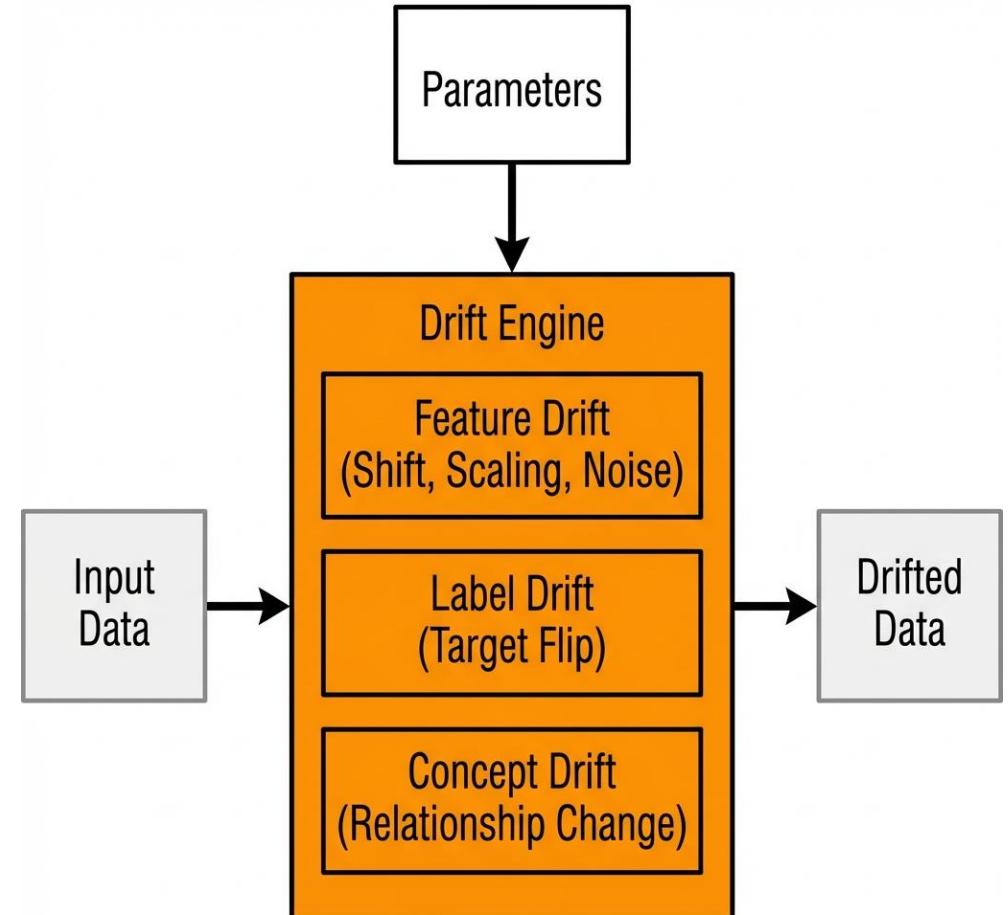

Methodology: Stream and time-series data generator

- Input: None
- Several simulators:
 - *River*: Python library to generate data.
 - Some examples of generators: Agrawal, Hyperplane...
- One method to 'chunk' the data into several parts.
- Synthetic data: Report

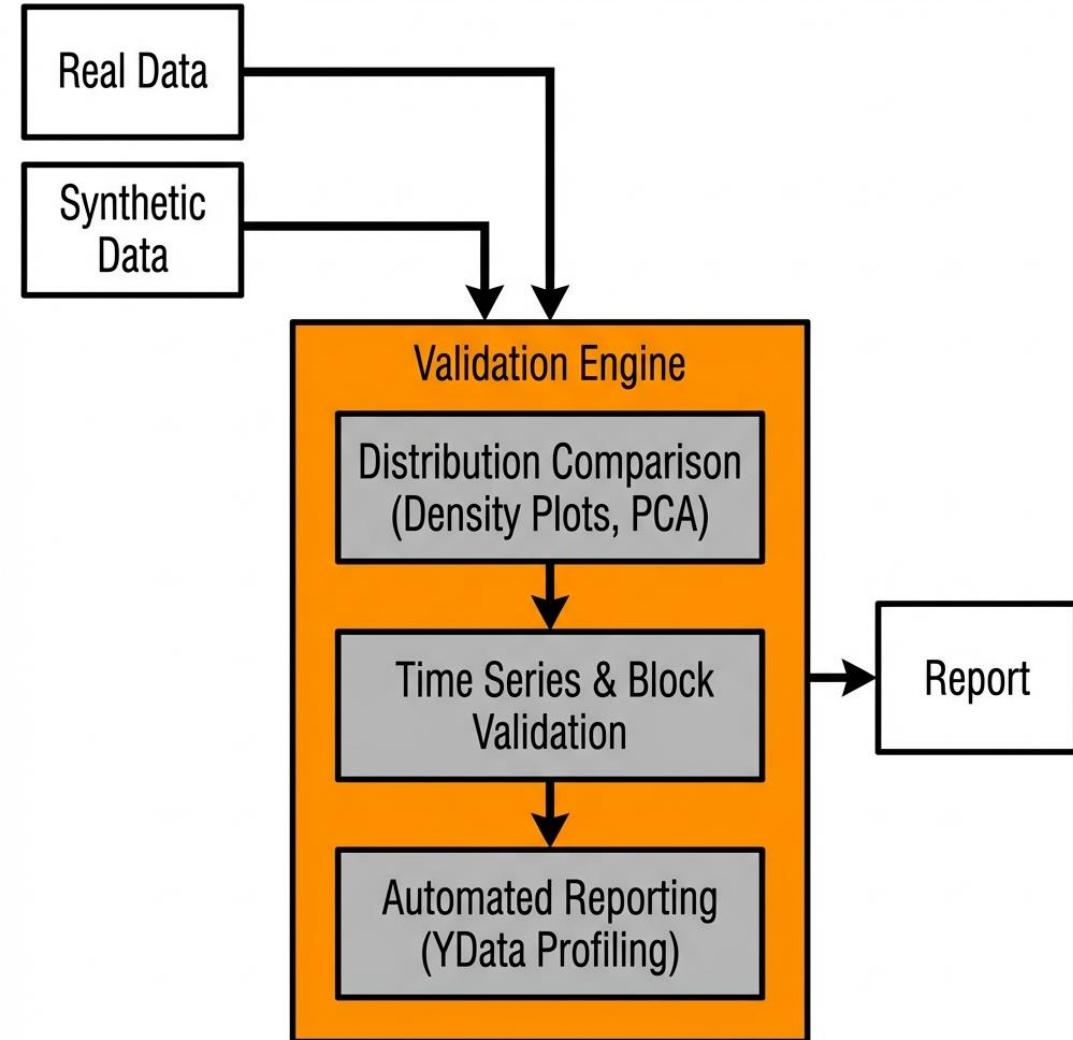
River


index
order

chunked


Methodology: Clinic data generator – Genes+Proteins

- Specific data generator for proteins, genes and demographic information of a set of patients
- Can be used for testing models before using them in real high-dimensional data


Methodology: Drift injector

- Can be utilised while creating synthetic data.
- Time-related drifts: Abrupt, gradual, incremental, recurrent.
- You can change data from:
 - One specific timepoint
 - One specific chunk
 - One specific index (row)
- Drifts according to:
 - Some specific feature or set of features.
 - Some specific conditions of a set of features
 - The target variable (label drift)
- Reports: drifted dataset vs the original dataset

Methodology: Reports of the results

- Plots and statistics to visualise:
 - Real data vs Synthetic data
 - Data with Drift vs Data without Drift
- Comparison between two datasets using:
 - **SDV indicator**: Comparison between distributions
 - **Weighted-SDV indicator**: Penalising by duplicated rows
- Report in a **html** with all the information

Results: Real data generator – IRIS dataset

- Set-up parameters:
 - Iris dataset as df input
 - Deep Learning method: TVAE
 - 200 rows simulated
- We can run a report of the comparison between → real and synthetic dataset

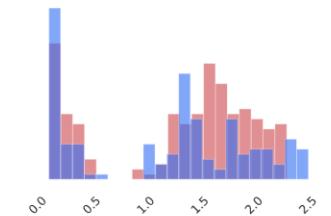
```
gen = RealGenerator(auto_report=False)
synthetic_data = gen.generate(
    data=data, n_samples=200, method="tvae", target_col="species"
)
```

Dataset statistics

	Original / Real	Generated / Synthetic
Number of variables	5	5
Number of observations	150	200
Missing cells	0	0
Missing cells (%)	0.0%	0.0%
Duplicate rows	1	0
Duplicate rows (%)	0.7%	0.0%
Total size in memory	6.0 KiB	7.9 KiB
Average record size in memory	40.9 B	40.6 B

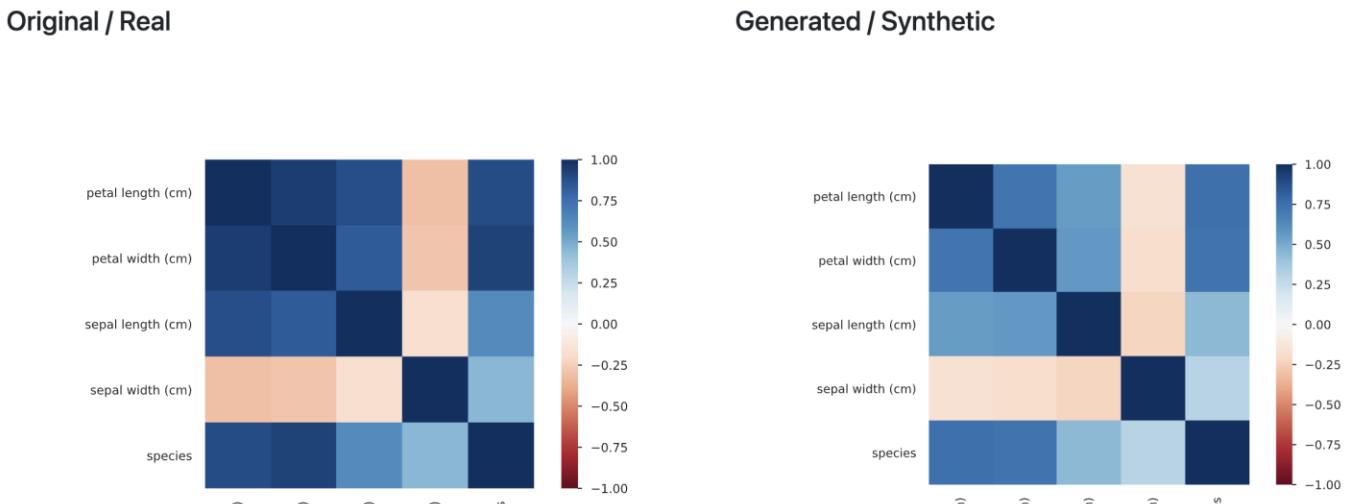
Results: Real data generator – IRIS dataset

- Set-up parameters:
 - Iris dataset as df input
 - Deep Learning method: TVAE
 - 200 rows simulated
- We can run a report of the comparison between real and synthetic dataset


Dataset statistics

	Original / Real	Generated / Synthetic
Number of variables	5	5
Number of observations	150	200
Missing cells	0	0
Missing cells (%)	0.0%	0.0%
Duplicate rows	1	0
Duplicate rows (%)	0.7%	0.0%
Total size in memory	6.0 KiB	7.9 KiB
Average record size in memory	40.9 B	40.6 B

Results: Real data generator – IRIS dataset

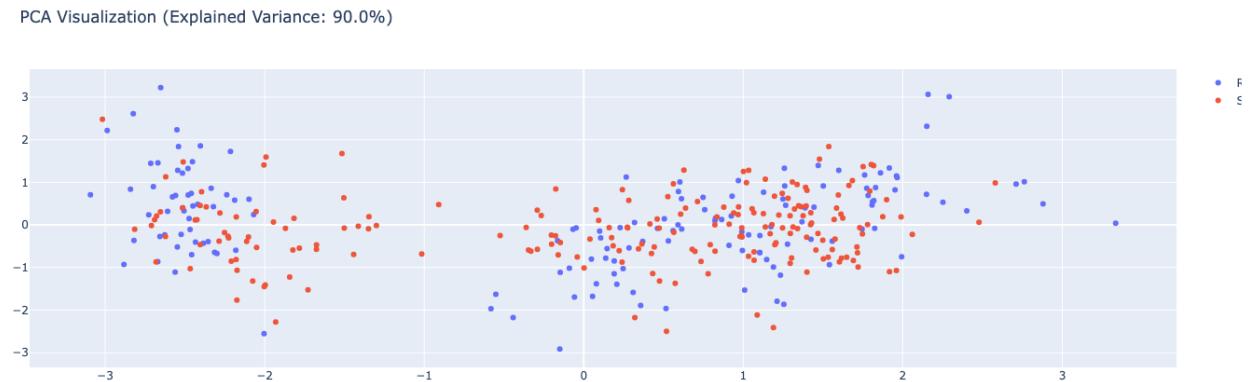

- Set-up parameters:
 - Iris dataset as df input
 - Deep Learning method: TVAE
 - 200 rows simulated
- We can run a report of the comparison between real and synthetic dataset

petal width (cm)		Real number (\mathbb{R})			
	Original / Real	Generated / Synthetic			
Distinct	22	20	Minimum	0.1	0.1
Distinct (%)	14.7%	10.0%	Maximum	2.5	2.3
Missing	0	0	Zeros	0	0
Missing (%)	0.0%	0.0%	Zeros (%)	0.0%	0.0%
Infinite	0	0	Negative	0	0
Infinite (%)	0.0%	0.0%	Negative (%)	0.0%	0.0%
Mean	1.1993333	1.3045	Memory size	1.3 KiB	1.7 KiB

Results: Real data generator – IRIS dataset

- Set-up parameters:
 - Iris dataset as df input
 - Deep Learning method: TVAE
 - 200 rows simulated
- We can run a report of the comparison between real and synthetic dataset

OVERALL QUALITY


85.6%

WEIGHTED QUALITY

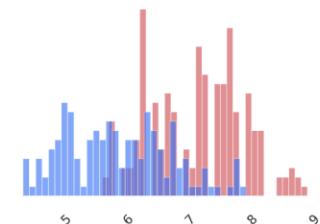
85.2%

Results: Real data generator – IRIS dataset

- Set-up parameters:
 - Iris dataset as df input
 - Deep Learning method: TVAE
 - 200 rows simulated
- We can run a report of the comparison between real and synthetic dataset

Results: Drift injector – IRIS dataset

- Set-up parameters:


- Synthetic Iris dataset as df input
- Drift on a specific column
- Abrupt drift
- New values = $x + (\text{mean} * \text{magnitude})$


```
injector = DriftInjector(auto_report=False)
drifted_data = injector.inject_drift(
    df=synthetic_data,
    columns=["sepal length (cm)"],
    drift_mode="abrupt",
    drift_magnitude=0.2,
    numeric_operation="shift",
)
```

- We can run a report of the comparison → between real dataset vs the drifted dataset

	Original / Real	Generated / Synthetic		Original / Real	Generated / Synthetic
Distinct	35	33	Minimum	4.3	5.5838
Distinct (%)	23.3%	16.5%	Maximum	7.9	8.8838
Missing	0	0	Zeros	0	0
Missing (%)	0.0%	0.0%	Zeros (%)	0.0%	0.0%
Infinite	0	0	Negative	0	0
Infinite (%)	0.0%	0.0%	Negative (%)	0.0%	0.0%
Mean	5.8433333	7.1028	Memory size	1.3 KiB	1.7 KiB

Results: Drift Specific Report – IRIS dataset

- Drift-Specific report:

- Columns affected type
- Drift type
- Magnitude of the drift=0.2

- Some statistics about divergence of previous vs new values:

- JS divergence
- KS test
- Cohen's d: Statistic on the difference of means
- % of the difference of means

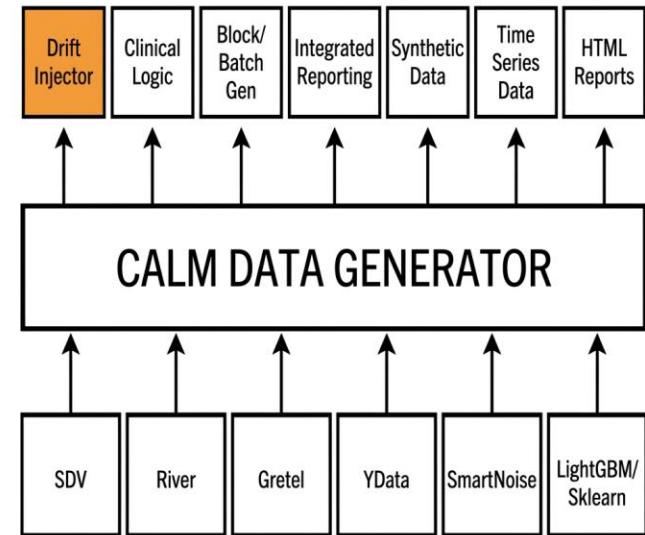
Feature	JS Div	KS Stat	KS p-value	Cohen's d	Mean Δ%
sepal length (cm)	0.5720	0.5267	0.0000	+1.594	+21.6%

Results: Clinic data generator – Genes+Proteins

```
gen = ClinicalDataGenerator()  
  
result = gen.generate(  
    n_samples=100,  
    n_genes=500,  
    n_proteins=200,  
    date_config=DateConfig(start_date="2024-01-01")  
)
```


	G_0	G_1	G_2	G_3	G_4	G_5	G_6	G_7	G_8	G_9	...	G_490	G_491	G_492	G_493	G_494	G_495	G_496	G_497	G_498	G_499
PAT_54425_0	8	827	60	160	129	31	13	55	45	633	...	228	13	473	321	134	20	6	27	1	63
PAT_48756_1	0	1105	88	51	611	428	15	23	130	248	...	185	97	82	597	186	26	31	22	13	3
PAT_28888_2	4	399	26	47	309	284	6	31	203	282	...	160	37	380	329	87	36	6	40	26	79
PAT_45735_3	9	744	36	61	572	248	3	18	26	242	...	394	25	273	418	243	62	12	29	35	35
PAT_57295_4	9	1597	94	42	43	363	2	24	247	247	...	395	12	712	394	84	73	13	30	25	24
...
PAT_50262_95	1	653	16	43	593	73	0	36	105	646	...	290	11	150	496	163	37	10	32	23	85
PAT_47080_96	7	1264	55	84	375	206	14	27	31	254	...	151	76	66	377	244	54	20	18	19	77
PAT_11324_97	8	740	106	73	485	154	5	20	64	153	...	90	38	1183	69	68	74	1	43	27	167
PAT_45909_98	2	888	14	68	203	85	8	12	1	366	...	187	2	520	246	63	4	11	45	2	84
PAT_99339_99	0	734	78	72	792	96	47	38	78	629	...	263	68	16	294	6	43	28	28	22	52
	P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	...	P_190	P_191	I							
PAT_54425_0	32.571177	20.120145	64.162860	190.279394	30.163168	33.399173	68.788400	57.950723	17.771532	7.744221	...	9.986855	90.106068	6.32							
PAT_48756_1	17.778802	17.580927	85.751493	121.067908	50.841133	24.729175	38.043847	57.399691	16.860506	8.875303	...	9.235489	84.921649	7.18							
PAT_28888_2	16.300670	20.001917	68.261433	199.619457	39.526831	23.528794	50.991873	53.776273	14.778493	8.403982	...	11.584543	124.318074	6.61							
PAT_45735_3	35.297800	18.530966	74.489577	144.294019	40.434321	32.557311	36.137370	65.751774	16.337587	7.527687	...	8.422427	93.953492	8.75							
PAT_57295_4	29.130873	16.815354	81.254704	145.221477	31.822623	22.936616	19.886411	76.731255	13.562067	8.576155	...	11.982067	84.911565	9.10							
...
PAT_50262_95	36.884825	9.460542	66.653406	129.297825	21.671188	17.887055	22.163657	52.282757	18.979319	7.888643	...	8.128353	125.594043	8.51							
PAT_47080_96	31.849557	23.447745	57.896632	103.146600	48.489465	13.145405	11.021252	77.879780	17.409948	8.477786	...	5.789203	87.969862	8.58							
PAT_11324_97	26.233261	19.471302	87.638478	90.182576	45.792998	26.559998	13.542362	57.087355	19.354877	8.645377	...	12.117712	89.280122	8.81							
PAT_45909_98	22.318189	21.558895	59.815312	188.398848	29.358069	36.197665	17.218910	59.599446	17.304858	10.593822	...	12.509757	86.958045	7.28							
PAT_99339_99	22.228913	20.170277	66.333362	164.489442	36.389391	27.358381	31.393639	70.379916	18.504245	10.562273	...	12.518287	91.633021	8.62							

Results: Clinic data generator – Genes+Proteins


```
gen = ClinicalDataGenerator()  
  
result = gen.generate(  
    n_samples=100,  
    n_genes=500,  
    n_proteins=200,  
    date_config=DateConfig(start_date="2024-01-01")  
)
```


Patient_ID	Age	Sex	timestamp	Disease_Subgroup	Group
PAT_54425_0	66	Female	2024-01-01	Disease	Disease
PAT_48756_1	78	Female	2024-01-01	Control	Control
PAT_28888_2	79	Male	2024-01-01	Control	Control
PAT_45735_3	67	Female	2024-01-01	Control	Control
PAT_57295_4	63	Female	2024-01-01	Control	Control
...
PAT_50262_95	37	Female	2024-01-01	Disease	Disease
PAT_47080_96	63	Female	2024-01-01	Control	Control
PAT_11324_97	54	Female	2024-01-01	Disease	Disease
PAT_45909_98	64	Female	2024-01-01	Disease	Disease
PAT_99339_99	64	Male	2024-01-01	Disease	Disease

To do

- **Robust testing**
- **Bug fixing:** Missing values, extreme imbalanced, small samples...
- **Add more examples in the documentation**
- **Paper**

Thank you! :-)