Exploring Quantum Machine Learning through Earth Observation Case Studies.

Artur Miroszewski

Artificial Intelligence in Research and Applications Seminar 26.06.2025

Quantum machine learning for analyzing multi- and hyperspectral satellite images

QA4EO: Quantum Advantage for Earth Observation

► GBS4EO: Gaussian Boson Sampling for Earth Observation

vše I _{II} I	TECHNICKÁ UNIVERZITA OSTRAVA	IT4INNOVATIONS NÁRODNÍ SUPERPOČÍTAČOVÉ CENTRUM
0.0120	USTRAVA	CENTROM

Quantum Machine Learning

- Earth observation data
 - Multispectral
 - Hyperspectral
 - Synthetic Aperture Radar
 - Lidar
- Algorithms
 - Classical ML baseline
 - Fully quantum not in the near future
 - Hybrid

Adiabatic theorem

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.

$$H(t) = \left(1-rac{t}{T}
ight)H_0 + rac{t}{T}H_1, \, T = \mathcal{O}\left(rac{1}{\Delta_{min}^2}
ight)$$

$$H(t) = -\sum_{i,j} J_{ij}\sigma_i\sigma_j - \mu \sum_i h_i\sigma_i, \sigma_i = \{-1,1\}$$

Easy implementation for Quadratic unconstrained binary optimization (QUBO) problems.

Adiabatic evolution

$$\boxed{Data} \rightarrow \boxed{Kernel} \rightarrow \boxed{SVM}_{training} \rightarrow \boxed{Classifier}$$

Support Vector Machines

- Classification supervised learning algorithm
- Maximization of margins

$$\min_{w,b} \ \frac{1}{2} |w|^2,$$

such that :
$$y^{(i)}(w \cdot w^{(i)} + b) \ge 1, i = 1, ..., m$$

Kernel trick: exchange inner product for some 'arbitrary' similarity measure

$$\langle x^{(i)}, x^{(j)} \rangle \mapsto K_{ij} = \langle \phi \left(x^{(i)} \right), \phi \left(x^{(j)} \right) \rangle$$

- **>** The transformation ϕ :
 - leads to higher dimensional space improved separability
 - allows for nonlinear class boundaries

$$\boxed{Data} \rightarrow \boxed{Kernel} \rightarrow \boxed{SVM}_{training} \rightarrow \boxed{Classifier}$$

Delilbasic, Amer, et al. A single-step multiclass SVM based on quantum annealing for remote sensing data classification. IEEE JSTARS (2023)

Study / Ref.	Task / Dataset	ML Problem	QML Method	QML Acc.	Class. Acc.	SOTA	Mode	Notes
Otgonbaatar, et al. (2021) [47]	Indian Pines / Land Cover	Binary classifi- cation	QA	92%	90%	-	\$	Multiple binary comparisons, on par
Otgonbaatar, et al. (2021) [47]	PolSAR / Land Cover	Binary classifi- cation	QA	99%	99%	-	0	
Delilbasic, et al. (2021) [19]	SemCity Toulouse / Land Cover	Binary classifi- cation	QA	87.4%	87.6%	-	\$	
Delilbasic, et al. (2024) [45]	SemCity Toulouse / Land Cover	Multiclass clas- sification	QA	86.6%	86.0%	-	Ø	Advantage in computational time scaling claim
Delilbasic, et al. (2024) [45]	ISPRS Postdam / Land Cover	Multiclass clas- sification	QA	81.2%	85.2%	-	Ø	Advantage in computational time scaling claim
Pasetto, et al. (2022) [46]	SeaBAM / Chlorophyll concentration	Regression	QA	MSE 10.88	MSE 8.40	-	\$	On par

Gate model of computation

Capable of universal computation

 $QC \stackrel{\text{Simulation}}{\longleftrightarrow} CC$

- Quantum circuits consist of:
 - qubit registers
 - quantum gates
- Gates can be parameterized with continuous parameters

Parameterized Quantum Circuits

- Some gates can be parameterized with parameters
 - Datum as a parameter
 - Tunable parameter
- Gates gathered into repeating layers
- Tunable parameter landscape training of QNN

$$\mathcal{L}_{\mathsf{MSE}} = (\hat{y} - y)^2, \; \hat{y} = \langle \psi(\Theta) | \hat{O} | \psi(\Theta)
angle$$

Unitarity?

Sebastianelli, Alessandro, et al. On circuit-based hybrid quantum neural networks for remote sensing imagery classification. IEEE JSTARS (2021)

Study / Ref.	Task / Dataset	ML Problem	QML Method	QML Acc.	Class. Acc.	SOTA	Mode	Notes
Chang, et al. (2022) [88]	EuroSAT, SAT4 / Land cover	Binary classifi- cation	QCNN	98%	-	98.5% [89]	Ð	On par
Sebastianelli, et al. (2021) [72]	EuroSAT / Land cover	Multiclass clas- sification	QCNN	92%	83%	98.5% [89]	ę	()
Sebastianelli, et al. (2023) [90]	Volcanic Eruption Prediction	Binary classifi- cation	QCNN	96%	88%	85%	Ð	-
Mauro, et al. (2025) [91]	ΦSat-2 / Water Quality Monitor- ing	Regression	QCNN	RMSE 0.198	RMSE 0.214	-	Q	Advantage in de- crease of model pa- rameters claim

$$\boxed{Data} \rightarrow \boxed{Kernel} \rightarrow \boxed{SVM}_{training} \rightarrow \boxed{Classifier}$$

Quantum kernel methods

Quantum Kernel Estimation

- ► Parameterized Quantum Circuits → encode data
- Measure specific properties of the encoded state
- Infer similarity between quantum states

Miroszewski, Artur, et al. Detecting clouds in multispectral satellite images using quantum-kernel support vector machines. IEEE JSTARS (2023)

QVI

Miroszewski, Artur, et al. Detecting clouds... IEEE JSTARS (2023); Wijata, Agata M., et al. Detection of bare soil... IEEE IGARSS (2024)

Study / Ref.	Task / Dataset	ML Problem	QML Method	QML Acc.	Class. Acc.	SOTA	Mode	Notes
Rodriguez- Grasa, et al. (2024) [92]	Photovoltaic Ar- ray [93]	Binary classifi- cation	QK	86.5(2.5)%	89.4 (2.5)%	-	Ģ	<u>1011</u>
Wijata, et al. (2024) [92]	Hyperview / Bare soil detection	Binary classifi- cation	QK	88.2(3.5)%	90.4(3.4)%	-	ę	0000
Gupta, et al. (2022) [94]	Artificial / Land cover	Binary classifi- cation	QK	$\sim 80\%$	$\sim 50\%$	-	Ð	Advantage for QK aligned dataset
Miroszewski, et al. (2023) [20]	38-Clouds / Cloud detection	Binary classifi- cation	QK	91.1(3.1)%	91.9(1.0)%	96% (95)	Ð	

Parameters	SC	T.ions	Photonic	N.atoms	S.spin	NV	CPUs
Clock cycle	1MHz	1KHz	10Hz	1MHz	$0.76 \mathrm{MHz}$	1MHz	$3 \mathrm{GHz}$
Measurement	660ns	$300 \mu s$	x	200ms	$1.3 \mu s$	x	x
2-qubit gate	34ns	$200 \mu s$	x	$< 100 \mu s$	x	700ns	x
1-qubit gate	25ns	$15 \mu s$	x	x	x	9ns	x
Readout fidelity	99.4%	97.3%	50.0%	99.1%	99%	98%	x
1Q fidelity	99.99%	99.99%	99.84%	99.83%	99.99%	99.99%	x
2Q fidelity	99.97%	99.9%	99.69%	99.4%	99.5%	99.2%	x

Problems: Curse of dimensionality

measurement uncertainty + exponential value concentration \Rightarrow exponential number of measurements

Miroszewski, Artur, et al. In search of quantum advantage:... arXiv:2407.15776 (2024).

Problems: Noise

Study / Ref.	Task / Dataset	ML Problem	QML Method	QML Acc.	Class. Acc.	SOTA	Mode	Notes
Chang, et al. (2022) [88]	EuroSAT, SAT4 / Land cover	Binary classifi- cation	QCNN	98%	-	98.5% [89]	Q	On par
Sebastianelli, et al. (2021) [72]	EuroSAT / Land cover	Multiclass clas- sification	QCNN	92%	83%	98.5% [89]	Ψ.	(11)
Sebastianelli, et al. (2023) [90]	Volcanic Eruption Prediction	Binary classifi- cation	QCNN	96%	88%	85%	•	_
Mauro, et al. (2025) [91]	ΦSat-2 / Water Quality Monitor- ing	Regression	QCNN	RMSE 0.198	RMSE 0.214	-	Ð	Advantage in de- crease of model pa- rameters claim
Rodriguez- Grasa, et al. (2024) [92]	Photovoltaic Ar- ray [93]	Binary classifi- cation	QK	86.5(2.5)%	89.4(2.5)%	S—3	9	
Wijata, et al. (2024) [92]	Hyperview / Bare soil detection	Binary classifi- cation	QK	88.2(3.5)%	90.4(3.4)%	(二)	•	
Gupta, et al. (2022) [94]	Artificial / Land cover	Binary classifi- cation	QK	$\sim 80\%$	$\sim 50\%$		•	Advantage for QK aligned dataset
Miroszewski, et al. (2023) [20]	38-Clouds / Cloud detection	Binary classifi- cation	QK	91.1(3.1)%	91.9(1.0)%	96% (95)		-
Otgonbaatar, et al. (2021) [47]	Indian Pines / Land Cover	Binary classifi- cation	QA	92%	90%		0	Multiple binary comparisons, on par
Otgonbaatar, et al. (2021) [47]	PolSAR / Land Cover	Binary classifi- cation	QA	99%	99%	-	•	
Delilbasic, et al. (2021) [19]	SemCity Toulouse / Land Cover	Binary classifi- cation	QA	87.4%	87.6%	_	0	
Delilbasic, et al. (2024) [45]	SemCity Toulouse / Land Cover	Multiclass clas- sification	QA	86.6%	86.0%	-	Ø	Advantage in computational time scaling claim
Delilbasic, et al. (2024) [45]	ISPRS Postdam / Land Cover	Multiclass clas- sification	QA	81.2%	85.2%	-	Ø	Advantage in computational time scaling claim
Pasetto, et al. (2022) [46]	SeaBAM / Chlorophyll concentration	Regression	QA	MSE 10.88	MSE 8.40	-	0	On par

QUEST Technical Committee

Gabriele Cavallaro Upendra Artur N. Singh Miroszewski

QS4EO WG

Aaron Strangfeld

Jan Rudolph

QC4EO WG

Alessandro Francesco Sebastianelli Mauro

Amer Delilbasic

Join QUEST!