
Hrudková Kateřina

Bridging Relational Learning
Paradigms, Relational Learning
over Microbiological data
Introducing popper2rdf and rdf2popper Python libraries, presenting two case
studies using KG-Microbe and KG-Covid19 knowledge graphs

Tomáš Kliegr

Department of Information and Knowledge

Engineering

fis.en.vsefis.vse.cz/english

2

Presentation outline

• Bridging Inductive Logic Programming and Rule Learning over
Knowledge Graphs

• popper2rdf

• rdf2popper

• Transformation success evaluation

• WN18RR experiment – performance comparison (Popper vs. RDFRules)

• Case studies (RDF Rule Learning)
• KG-Microbe

• Building classifier to predict media

• KG-COVID19
• 2 tasks on finding interactions between entities

• Conclusion

fis.en.vsefis.vse.cz/english

3

Different formats, different methods, same results?

• Inductive Logic Programming (systems like

Aleph, Popper) → highly expressive but at

times struggles with scalability and often

requires negative examples (Closed World

Assumption),

• Rule Learning over Knowledge Graphs (e.g.,

AMIE+, RDFRules)→ scalable and designed to

work without negative examples, but lacks

ILP's expressivity (Open World Assumption)

<pieceA> <hasSize> “4.7”.

RDF (Resource Desription
Framework)

in N-triples format
(W3C

Recommendation)

size(piece_a, 4.7).
fact/ground atom

fis.en.vsefis.vse.cz/english

4

numeric-zendo1 example

fis.en.vsefis.vse.cz/english

5

popper2rdf - from Prolog atoms to RDF triples

• Transforms Prolog atoms (currently supports Popper datasets) into

RDF triples – these express binary relationships

• Key challenges:

• Unary atoms - mapped using a generic has_property predicate.

• N-ary predicates - uses RDF reification to preserve the complete relationship

• Positive/negative examples – encoded directly into the RDF triple

• For unary atoms, boolean literals (true/false) are used in the object position; for

binary/n-ary atoms, a prefix not_ is applied to the predicate.

<pieceA> <hasSize> “4.7”.
hasSize(PieceA, „4.7“)

fis.en.vsefis.vse.cz/english

6

Backgound knowledge atoms to RDF triples transformation table

fis.en.vsefis.vse.cz/english

7

popper2rdf – usage (in Jupyter notebook)

Clone the project

import

Source data folder

Output data folder

Enter dataset name
(folder name)

Source data Output data

fis.en.vsefis.vse.cz/english

8

RDF triples to backgound knowledge atoms transformation table

fis.en.vsefis.vse.cz/english

9

rdf2popper – usage (in Jupyter notebook)

import

Source data file

Examples predicate symbol declarations

Source data

Output data

Clone the project

Enter dataset name
(folder name)

Mode

Minimal bias generated
authomatically

fis.en.vsefis.vse.cz/english

10

Transformation success

• Goal: Evaluate if the core information and learnable
patterns are preserved across data formats

• Two-Part Evaluation:
• Prolog → RDF: Learn rules with Popper on the original data →

transform the data to RDF and learn rules with RDFRules → compare
the results

• Prolog → RDF → Prolog: Transform the original Prolog data to RDF
and then immediately back to Prolog → learn rules with Popper on
this "round-tripped" data and compare them to the original Popper
rules

• Exact/similar solutions = successful transformation

fis.en.vsefis.vse.cz/english

11

Metrics and datasets

• Similarity:

• Quantitative = standard metrics like Precision, Recall, and F₁-score on the

entire dataset

• Qualitative = a set of principles to determine if rules are "similar," allowing

for minor differences in variable names or numerical boundaries

• A collection of four well-known and interpretable ILP datasets were

chosen

• numeric-zendo1 & numeric-zendo2: an inductive logic game used to test

handling of numerical values and n-ary relations

• trains1: a classic dataset for relational learning about train properties

• imdb3: a dataset containing information about movies, actors, and directors

fis.en.vsefis.vse.cz/english

12

Prolog → RDF Transformation

• For 3 out of 4 datasets, the rules learned by RDFRules on the
transformed data were considered similar to Popper's original
rules

• trains1 and imdb3 – solutions were equivalent

• numeric-zendo1 – a near-exact match was found as minor
differences were caused by RDFRules' use of discretization for
numerical values

• numeric-zendo2 – the solutions were not similar as the
original Popper rule required summing numerical values, a
function that RDFRules does not support

fis.en.vsefis.vse.cz/english

13

trains1

f(A):- has_car(A,C),
three_wheels(C),has_car(A,B),
long(B),roof_closed(B).

(?c <has_property> <roof_closed>) ∧
(?b <has_property> <three_wheels>) ∧
(?a <has_car> ?c) ∧ (?a <has_car> ?b)
⇒ (?a <f> true)

Prolog
(Popper)

RDFRules

The solutions are semantically equivalent. RDFRules successfully replicated the Popper rule. Note the
use of the generic <has_property> predicate, which is how unary Prolog atoms (like
roof_closed and three_wheels) were transformed into RDF.

fis.en.vsefis.vse.cz/english

14

imdb3

f(A,B):- movie(C,B),director(B),actor(A),movie(C,A).
f(A,B):- movie(C,B),movie(C,A),gender(A,D),gender(B,D).

(?d <movie> ?b) ∧ (?b <gender> ?c) ∧ (?d <movie>
?a) ∧ (?a <gender> ?c)
⇒ (?a <f> ?b) (?b <has_property> <director>) ∧ (
?c <movie> ?b) ∧ (?c <movie> ?a) ∧ (?a
<has_property> <actor>) ⇒ (?a <f> ?b)

Prolog (Popper)

RDFRules

The solutions are equivalent. RDFRules found the same two rules discovered by Popper,
demonstrating successful transformation of the relational structure (e.g., identifying co-stars of the
same gender, and an actor/director pair who worked on the same movie).

fis.en.vsefis.vse.cz/english

15

numeric-zendo1

zendo(A):- piece(A,B),
contact(B,C),
size(C,D),geq(D,4.12).

(?c <size#discretized_level_1>
[4.945 ; 9.94]) ∧
(?c <contact> ?b) ∧
(?a <piece> ?b) ⇒ (?a <zendo> true)

Prolog (Popper)

RDFRules

The solutions are considered similar. The core logic is identical, but the numerical boundaries differ
(4.12 vs 4.945). This is because RDFRules uses discretization (binning) for numerical values, while
Popper identifies precise thresholds.

fis.en.vsefis.vse.cz/english

16

numeric-zendo2
zendo(A):- piece(A,D),rotation(D,B),
geq(B,0.94),leq(B,4.309).
zendo(A):- piece(A,D),position(D,B,E),
add(E,B,F),leq(F,6.459).

(?c <position_p2#discretized_level_1> [0 ; 5.365)) ∧
(?c <position_p3#discretized_level_1>
[0.08588908852349572 ; 5.38)) ∧
(?c <position_p1> ?b) ∧ (?a <piece> ?b)
⇒ (?a <zendo> true)

Prolog (Popper)

RDFRules

The solutions are not similar. The Popper solution relies on constraints on size and rotation. The RDFRules solution (showing
1 of 4 rules) instead relies on discretized position attributes (p1, p2, p3). This divergence likely occurs due to how n-ary
relations (like position) are transformed (reified) and limitations in RDFRules' numerical reasoning capabilities.

fis.en.vsefis.vse.cz/english

17

Quantitative Evaluation: Prolog → RDF
Baseline: Popper results on Original Prolog Data.

Results: RDFRules results on Transformed RDF Data.

Performance remains perfect for trains1 and imdb3. Minor drops in F1 for numeric-zendo
datasets (Bottom) are due to the discretization of numerical values by RDFRules.

fis.en.vsefis.vse.cz/english

18

Prolog → RDF → Prolog

• For 3 out of 4 datasets, Popper learned solutions identical to the
original ones after the round-trip

• numeric-zendo1 and trains1 – Popper found the exact same
solutions with identical coverage after the round-trip

• imdb3 – Popper found the same solution, but with slightly lower
example coverage because the run timed out on the transformed
data (most likely due to no continuous ordering)

• numeric-zendo2 – Popper found a different (though still optimal)
solution → the round-trip transformation could not represent the
required summation function, preventing the original rule from being
re-learned

fis.en.vsefis.vse.cz/english

19

numeric-zendo2 (Prolog → RDF → Prolog)

zendo(A):- piece(A,B),size(B,D),leq(D,4.069),geq(D,3.0).
zendo(A):- piece(A,D),rotation(D,B),geq(B,5.07),leq(B,5.179).
zendo(A):- piece(A,D),rotation(D,B),geq(B,0.94),leq(B,4.309).

zendo(A):- piece(A,D),rotation(D,B),
geq(B,0.94),leq(B,4.309).
zendo(A):- piece(A,D),position(D,B,E),
add(E,B,F),leq(F,6.459).

Prolog (Popper original)

Prolog (Popper round-trip)

The solutions are not similar. Popper found a different solution after the round-trip transformation. The
transformation process altered how the underlying data was represented, leading Popper to discover an
alternative way to explain the examples

fis.en.vsefis.vse.cz/english

20

Quantitative Evaluation: Round-trip (P→RDF→P)

Baseline: Popper results on Original Prolog Data

Results: Popper results on Transformed (Round-trip) Data.
* The lower TP (4,060) and TN
(10,000) counts occurred
because the Popper run timed
out on the transformed data
before evaluating all examples.
Precision and Recall remained
1.00, indicating the learned
rules were correct for the
subset evaluated.

fis.en.vsefis.vse.cz/english

21

Experiment – WN18RR dataset

• Benchmark dataset WN18RR
• Natively RDF knowledge graph consisting of 89,869 triples

• Testing the scalability of ILP and RDF rule mining tools
• Popper(v4.4.0) and RDFRules (v1.9.0)

• Demonstration of case, where user can benefit from the
interoperability between methods

• 10 datasets from WN18RR knowledge graph
• Smallest → 10% random triples from the whole KG

• Largest → the entire KG

• Each dataset included 10% more random triples from the KG

fis.en.vsefis.vse.cz/english

22

Experiment settings

• Learning rules of max length 6
• Popper bias containing only the head_pred and body_pred definitions

(inspired by the WN18RR example from the Popper repository)

• RDFRules CWA confidence threshold 0.001, Data Coverage Pruning applied

• Running as recursive and non-recursive
• Recursive as in the result rules can contain the target relation both in the

head and in the body of the rule

• RDFRules natively creates recursive rules, Popper needs declaration in bias

• Popper run both with and without (labeled as regular) settings
• Noisy setting inspired by the ILP example

• RDFRules does not have an analogous setting

• Target relation = verb_group

fis.en.vsefis.vse.cz/english

23

Recursive rules

verb_group(A, B) :- verb_group(B, A),
derivationally_related_form(A, C),
derivationally_related_form(C, D), hypernym(C, E),
derivationally_related_form(D, E).

(?e <derivationally_related_form> ?d) ^
(?c <derivationally_related_form> ?e) ^
(?c <hypernym> ?d) ^
(?c <derivationally_related_form> ?a) ^
(?b <verb_group> ?a) ⇒ (?a <verb_group>
?b)

Prolog (Popper)

RDFRules

Example of a complex recursive
rule (where verb_group appears
in both the head and body). The
RDFRules example shown is highly
reliable: it has a CWA Confidence
of 1.0 and a Support of 84,
meaning in all 84 cases where this
pattern occurred, the conclusion
was correct.

fis.en.vsefis.vse.cz/english

24

Runtime vs. Number of learned rules

Popper is faster in non-recursive settings on this
dataset but consistently times out (>1200s) when
recursion is enabled.

RDFRules generates significantly more rules, reflecting
its exhaustive mining approach compared to Popper's
minimal program synthesis.

fis.en.vsefis.vse.cz/english

25

Performance on non-recursive tasks

fis.en.vsefis.vse.cz/english

26

Performance on non-recursive tasks

fis.en.vsefis.vse.cz/english

27

Performance on recursive tasks

fis.en.vsefis.vse.cz/english

28

Performance on recursive tasks

fis.en.vsefis.vse.cz/english

29

Case study: KG-Microbe (Santangelo et al. 2025)

• Motivation: Understanding of complex interactions

between microbes, their environment, and human

health

• A microbe-centric knowledge graph designed for linked

(relational) microbial data

• 1,368,732 nodes and 2,763,211 edges

fis.en.vsefis.vse.cz/english

30

Task Definition

• Goal: Find new information about possible cultivation media

for microbes

• Task focused on a specific list of 40 media recommended by

domain experts

• Knowledge graph rule mining task and building classifier →

RDFRules

fis.en.vsefis.vse.cz/english

31

Top 5 media based on frequency

Medium ID Medium Name Occurrence

65 GYM STREPTOMYCES MEDIUM 1920

214 BACTO MARINE BROTH (DIFCO 2216) 1634

693 COLUMBIA BLOOD MEDIUM 1284

830 R2A MEDIUM 1278

92
TRYPTICASE SOY YEAST EXTRACT

MEDIUM
1217

fis.en.vsefis.vse.cz/english

32

Rule Discovery: Approach

• Objective → classify media connected to a microbe by

the biolink:occurs_in predicate

• This relationship signifies the environment where the microbe was

found, lives, or was grown (e.g., natural substance or lab medium)

• 40 separate mining procedures were run, one for each of the

target media

• merged 40 rulesets into 2.64 million rules, further reductions resulted

in ruleset consisting of 3,779 rules

• Rules found a prediction for all 407 test cases

fis.en.vsefis.vse.cz/english

33

Prediction Example: Gemella sanguinis

• The mined rule predicts the medium Columbia blood medium

for a microbe that consumes D-mannitol, has a coccus cell

shape and is capable of pyroglutamyl-peptidase I

(?a biolink:consumes obo:CHEBI_16899) ∧
(?a biolink:has_phenotype
cell_shape:coccus) ∧
(?a biolink:capable_of EC:3.4.19.3)
⇒ (?a biolink:occurs_in medium:693)

RDFRules

fis.en.vsefis.vse.cz/english

34

Case Study: KG-COVID-19 (Reese et al. 2021)

• Motivation: Consolidating biomedical data to find drug

repositioning candidates for COVID-19

• Graph contains information on COVID-19, human proteins,

genes, chemical compounds, drugs, and related scientific

literature

• 377,482 nodes and 21,433,063 edges

• Graph size reduced to process with available resources

• Metadata removal, missing triples imputation using high confidence

rules

fis.en.vsefis.vse.cz/english

35

Task (2A) Definition

• Goal: Perform a mechanistic deep-dive on a specific set of

drugs

• Objective: Find drugs that m-interact with ACE1 and, via an

intermediary, interact with ACE2 they link by identifying

shared properties or common third proteins

• Knowledge graph rule mining task → RDFRules

• Result contained three rules

fis.en.vsefis.vse.cz/english

36

Uncovering the Core RAS Pathway

• The identified drugs are Angiotensin II Receptor Blockers

(ARBs)

(?b <interacts_with> <Q9BYF1>) ∧
(?a <molecularly_interacts_with> ?b) ∧
(?a <category> <Drug>) ∧
(?a <molecularly_interacts_with> <P30556>
)
⇒ (?a <molecularly_interacts_with>
<P12821>) RDFRules

fis.en.vsefis.vse.cz/english

37

Task (2B) Definition

• Goal: Analyze common characteristics of all entities (not just

drugs) that directly interact with both ACE1 and ACE2

• Objective: Move beyond simple pairwise interactions to find

significant, higher-order relationships

• Knowledge graph rule mining task → RDFRules

fis.en.vsefis.vse.cz/english

38

Surfacing a Core Biological Axis

• The rule with the highest support captures a critical triangular

relationship at the nexus of the Renin-Angiotensin and Nitric

Oxide systems

⇒ (?a <molecularly_interacts_with>
<P12821>)
(?a <interacts_with> <Q9BYF1>) ∧
(?a <interacts_with> <P29475>)
⇒ (?a <interacts_with> <P12821>)

RDFRules

fis.en.vsefis.vse.cz/english

39

Conclusion
• popper2rdf and rdf2popper provides first insight at bridging the gap between the

worlds of ILP and RDF rule mining

• The main contribution is providing the community with the first practical, open-
source tools to make these powerful paradigms interoperable

• The tools were tested on four benchmark datasets and results show that
transformation is viable and effective for enabling interoperability for declarative
relational data

• The utility of these tools was demonstrated in a comparative experiment on the
WN18RR benchmark dataset, which highlighted the distinct strengths of each
paradigm

• ILP (Popper): On non-recursive tasks, Popper was significantly faster and more scalable
than RDFRules as the data size increased,

• However, RDFrules generated more rules, which may lead to better predictive performance

• RDF Rule Learning (RDFRules): RDFRules successfully handled large-scale recursive rule
learning, a task where Popper timed out at all sample sizes, on non-recursive tasks,
RDFRules was slower but learned a substantially larger number of rules

fis.en.vsefis.vse.cz/english

40

Conclusion

• Practical case studies demonstrating the utility of rule mining on
real-world knowledge graphs:

• KG-Microbe: An analysis of the KG-Microbe graph used RDFRules to find
new information about microbial cultivation media by building classifier to
predict media for microbes

• "Columbia blood medium" for microbes based on specific phenotypic and metabolic
traits (e.g., Gemella sanguinis consuming D-mannitol, having a coccus shape, and
pyroglutamyl-peptidase I capability)

• KG-Covid-19: A study on the KG-Covid-19 graph successfully identified
drug repositioning candidates

• The rules uncovered by RDFRules corresponded to known drug classes, such as
Angiotensin II Receptor Blockers (ARBs) , and surfaced critical biological
relationships, like the triangular nexus between the Renin-Angiotensin and Nitric
Oxide systems

fis.en.vsefis.vse.cz/english

41

Demo - rdfrules.vse.cz

• Links:
• khrudkova/popper2rdf

• khrudkova/rdf2popper

https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/rdf2popper/tree/main
https://github.com/khrudkova/rdf2popper/tree/main
https://github.com/khrudkova/rdf2popper/tree/main

fis.en.vsefis.vse.cz/english

42

References

Andrew Cropper and Rolf Morel. Learning programs by learning from failures.
Machine Learning,110(4):801–856, 2021.

Galárraga, L., Teflioudi, C., Hose, K., & Suchanek, F. M. (2015). Fast rule mining
in ontological knowledge bases with AMIE++. The VLDB Journal, 24(6), 707-730.

Santangelo, B. E., Hegde, H., Caufield, J. H., Reese, J., Kliegr, T., Hunter, L. E., ...
& Joachimiak, M. P. (2025). KG-Microbe-Building Modular and Scalable
Knowledge Graphs for Microbiome and Microbial Sciences. bioRxiv, 2025-02.

Reese, J. T., Unni, D., Callahan, T. J., Cappelletti, L., Ravanmehr, V., Carbon, S.,
... & Mungall, C. J. (2021). KG-COVID-19: a framework to produce customized
knowledge graphs for COVID-19 response. Patterns, 2(1).

Václav Zeman, Tomáš Kliegr, and Vojtěch Svátek. RDFRules: Making RDF rule
mining easier and even more efficient. Semantic web, 12(4):569–602, 2021.

Name and surname of author

name.surname@vse.cz

Thanks for your attention

	Snímek 1: Bridging Relational Learning Paradigms, Relational Learning over Microbiological data
	Snímek 2: Presentation outline
	Snímek 3: Different formats, different methods, same results?
	Snímek 4: numeric-zendo1 example
	Snímek 5: popper2rdf - from Prolog atoms to RDF triples
	Snímek 6: Backgound knowledge atoms to RDF triples transformation table
	Snímek 7: popper2rdf – usage (in Jupyter notebook)
	Snímek 8: RDF triples to backgound knowledge atoms transformation table
	Snímek 9: rdf2popper – usage (in Jupyter notebook)
	Snímek 10: Transformation success
	Snímek 11: Metrics and datasets
	Snímek 12: Prolog → RDF Transformation
	Snímek 13: trains1
	Snímek 14: imdb3
	Snímek 15: numeric-zendo1
	Snímek 16: numeric-zendo2
	Snímek 17: Quantitative Evaluation: Prolog → RDF
	Snímek 18: Prolog → RDF → Prolog
	Snímek 19: numeric-zendo2 (Prolog → RDF → Prolog)
	Snímek 20: Quantitative Evaluation: Round-trip (P→RDF→P)
	Snímek 21: Experiment – WN18RR dataset
	Snímek 22: Experiment settings
	Snímek 23: Recursive rules
	Snímek 24: Runtime vs. Number of learned rules
	Snímek 25: Performance on non-recursive tasks
	Snímek 26: Performance on non-recursive tasks
	Snímek 27: Performance on recursive tasks
	Snímek 28: Performance on recursive tasks
	Snímek 29: Case study: KG-Microbe (Santangelo et al. 2025)
	Snímek 30: Task Definition
	Snímek 31: Top 5 media based on frequency
	Snímek 32: Rule Discovery: Approach
	Snímek 33: Prediction Example: Gemella sanguinis
	Snímek 34: Case Study: KG-COVID-19 (Reese et al. 2021)
	Snímek 35: Task (2A) Definition
	Snímek 36: Uncovering the Core RAS Pathway
	Snímek 37: Task (2B) Definition
	Snímek 38: Surfacing a Core Biological Axis
	Snímek 39: Conclusion
	Snímek 40: Conclusion
	Snímek 41: Demo - rdfrules.vse.cz
	Snímek 42: References
	Snímek 43: Thanks for your attention

