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Presentation outline

• Bridging Inductive Logic Programming and Rule Learning over 
Knowledge Graphs

• popper2rdf

• rdf2popper

• Transformation success evaluation

• WN18RR experiment – performance comparison (Popper vs. RDFRules)

• Case studies (RDF Rule Learning)
• KG-Microbe

• Building classifier to predict media

• KG-COVID19
• 2 tasks on finding interactions between entities

• Conclusion
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Different formats, different methods, same results?

• Inductive Logic Programming (systems like 

Aleph, Popper) → highly expressive but at 

times struggles with scalability and often 

requires negative examples (Closed World 

Assumption),

• Rule Learning over Knowledge Graphs (e.g., 

AMIE+, RDFRules)→ scalable and designed to 

work without negative examples, but lacks 

ILP's expressivity (Open World Assumption)

<pieceA> <hasSize> “4.7”.

RDF (Resource Desription
Framework) 

in N-triples format
(W3C 

Recommendation)

size(piece_a, 4.7).
fact/ground atom 
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numeric-zendo1 example



fis.en.vsefis.vse.cz/english

5

popper2rdf - from Prolog atoms to RDF triples

• Transforms Prolog atoms (currently supports Popper datasets) into 

RDF triples – these express binary relationships 

• Key challenges:

• Unary atoms - mapped using a generic has_property predicate.

• N-ary predicates - uses RDF reification to preserve the complete relationship

• Positive/negative examples – encoded directly into the RDF triple

• For unary atoms, boolean literals (true/false) are used in the object position; for 

binary/n-ary atoms, a prefix not_ is applied to the predicate.

<pieceA> <hasSize> “4.7”.
hasSize(PieceA, „4.7“)
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Backgound knowledge atoms to RDF triples transformation table
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popper2rdf – usage (in Jupyter notebook)

Clone the project

import

Source data folder

Output data folder

Enter dataset name 
(folder name)

Source data Output data
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RDF triples to backgound knowledge atoms transformation table
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rdf2popper – usage (in Jupyter notebook)

import

Source data file

Examples predicate symbol declarations

Source data

Output data

Clone the project

Enter dataset name 
(folder name)

Mode

Minimal bias generated 
authomatically
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Transformation success

• Goal: Evaluate if the core information and learnable 
patterns are preserved across data formats

• Two-Part Evaluation:
• Prolog → RDF: Learn rules with Popper on the original data →

transform the data to RDF and learn rules with RDFRules → compare
the results

• Prolog → RDF → Prolog: Transform the original Prolog data to RDF 
and then immediately back to Prolog → learn rules with Popper on 
this "round-tripped" data and compare them to the original Popper 
rules

• Exact/similar solutions = successful transformation
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Metrics and datasets

• Similarity:

• Quantitative = standard metrics like Precision, Recall, and F₁-score on the 

entire dataset

• Qualitative = a set of principles to determine if rules are "similar," allowing 

for minor differences in variable names or numerical boundaries

• A collection of four well-known and interpretable ILP datasets were 

chosen

• numeric-zendo1 & numeric-zendo2: an inductive logic game used to test 

handling of numerical values and n-ary relations

• trains1: a classic dataset for relational learning about train properties

• imdb3: a dataset containing information about movies, actors, and directors
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Prolog → RDF Transformation

• For 3 out of 4 datasets, the rules learned by RDFRules on the 
transformed data were considered similar to Popper's original 
rules

• trains1 and imdb3 – solutions were equivalent

• numeric-zendo1 – a near-exact match was found as minor
differences were caused by RDFRules' use of discretization for 
numerical values

• numeric-zendo2 – the solutions were not similar as the 
original Popper rule required summing numerical values, a 
function that RDFRules does not support
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trains1

f(A):- has_car(A,C),
three_wheels(C),has_car(A,B),
long(B),roof_closed(B).

( ?c <has_property> <roof_closed> ) ∧
( ?b <has_property> <three_wheels> ) ∧
( ?a <has_car> ?c ) ∧ ( ?a <has_car> ?b )
⇒ ( ?a <f> true )

Prolog 
(Popper)

RDFRules

The solutions are semantically equivalent. RDFRules successfully replicated the Popper rule. Note the 
use of the generic <has_property> predicate, which is how unary Prolog atoms (like 
roof_closed and three_wheels) were transformed into RDF.
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imdb3

f(A,B):- movie(C,B),director(B),actor(A),movie(C,A).
f(A,B):- movie(C,B),movie(C,A),gender(A,D),gender(B,D).

( ?d <movie> ?b ) ∧ ( ?b <gender> ?c ) ∧ ( ?d <movie> 
?a ) ∧ ( ?a <gender> ?c ) 
⇒ ( ?a <f> ?b ) ( ?b <has_property> <director> ) ∧ ( 
?c <movie> ?b ) ∧ ( ?c <movie> ?a ) ∧ ( ?a 
<has_property> <actor> )  ⇒ ( ?a <f> ?b )

Prolog (Popper)

RDFRules

The solutions are equivalent. RDFRules found the same two rules discovered by Popper, 
demonstrating successful transformation of the relational structure (e.g., identifying co-stars of the 
same gender, and an actor/director pair who worked on the same movie).
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numeric-zendo1

zendo(A):- piece(A,B),
contact(B,C),
size(C,D),geq(D,4.12).

( ?c <size#discretized_level_1> 
[ 4.945 ; 9.94 ] ) ∧
( ?c <contact> ?b ) ∧
( ?a <piece> ?b ) ⇒ ( ?a <zendo> true )

Prolog (Popper)

RDFRules

The solutions are considered similar. The core logic is identical, but the numerical boundaries differ 
(4.12 vs 4.945). This is because RDFRules uses discretization (binning) for numerical values, while 
Popper identifies precise thresholds.
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numeric-zendo2
zendo(A):- piece(A,D),rotation(D,B),
geq(B,0.94),leq(B,4.309).
zendo(A):- piece(A,D),position(D,B,E),
add(E,B,F),leq(F,6.459).

( ?c <position_p2#discretized_level_1> [ 0 ; 5.365 ) ) ∧
( ?c <position_p3#discretized_level_1>
[ 0.08588908852349572 ; 5.38 ) ) ∧
( ?c <position_p1> ?b ) ∧ ( ?a <piece> ?b )
⇒ ( ?a <zendo> true )

Prolog (Popper)

RDFRules

The solutions are not similar. The Popper solution relies on constraints on size and rotation. The RDFRules solution (showing 
1 of 4 rules) instead relies on discretized position attributes (p1, p2, p3). This divergence likely occurs due to how n-ary
relations (like position) are transformed (reified) and limitations in RDFRules' numerical reasoning capabilities.
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Quantitative Evaluation: Prolog → RDF
Baseline: Popper results on Original Prolog Data.  

Results: RDFRules results on Transformed RDF Data.

Performance remains perfect for trains1 and imdb3. Minor drops in F1 for numeric-zendo
datasets (Bottom) are due to the discretization of numerical values by RDFRules.
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Prolog → RDF → Prolog

• For 3 out of 4 datasets, Popper learned solutions identical to the 
original ones after the round-trip

• numeric-zendo1 and trains1 – Popper found the exact same 
solutions with identical coverage after the round-trip

• imdb3 – Popper found the same solution, but with slightly lower 
example coverage because the run timed out on the transformed 
data (most likely due to no continuous ordering)

• numeric-zendo2 – Popper found a different (though still optimal) 
solution → the round-trip transformation could not represent the 
required summation function, preventing the original rule from being 
re-learned



fis.en.vsefis.vse.cz/english

19

numeric-zendo2 (Prolog → RDF → Prolog)

zendo(A):- piece(A,B),size(B,D),leq(D,4.069),geq(D,3.0).
zendo(A):- piece(A,D),rotation(D,B),geq(B,5.07),leq(B,5.179).
zendo(A):- piece(A,D),rotation(D,B),geq(B,0.94),leq(B,4.309).

zendo(A):- piece(A,D),rotation(D,B),
geq(B,0.94),leq(B,4.309).
zendo(A):- piece(A,D),position(D,B,E),
add(E,B,F),leq(F,6.459).

Prolog (Popper original)

Prolog (Popper round-trip)

The solutions are not similar. Popper found a different solution after the round-trip transformation. The 
transformation process altered how the underlying data was represented, leading Popper to discover an 
alternative way to explain the examples
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Quantitative Evaluation: Round-trip (P→RDF→P)

Baseline: Popper results on Original Prolog Data

Results: Popper results on Transformed (Round-trip) Data.
* The lower TP (4,060) and TN 
(10,000) counts occurred 
because the Popper run timed 
out on the transformed data 
before evaluating all examples. 
Precision and Recall remained 
1.00, indicating the learned 
rules were correct for the 
subset evaluated.
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Experiment – WN18RR dataset

• Benchmark dataset WN18RR
• Natively RDF knowledge graph consisting of 89,869 triples

• Testing the scalability of ILP and RDF rule mining tools
• Popper(v4.4.0) and RDFRules (v1.9.0)

• Demonstration of case, where user can benefit from the 
interoperability between methods

• 10 datasets from WN18RR knowledge graph
• Smallest → 10% random triples from the whole KG

• Largest → the entire KG

• Each dataset included 10% more random triples from the KG
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Experiment settings

• Learning rules of max length 6
• Popper bias containing only the head_pred and body_pred definitions 

(inspired by the WN18RR example from the Popper repository)

• RDFRules CWA confidence threshold 0.001, Data Coverage Pruning applied

• Running as recursive and non-recursive
• Recursive as in the result rules can contain the target relation both in the 

head and in the body of the rule

• RDFRules natively creates recursive rules, Popper needs declaration in bias

• Popper run both with and without (labeled as regular) settings
• Noisy setting inspired by the ILP example

• RDFRules does not have an analogous setting

• Target relation = verb_group
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Recursive rules

verb_group(A, B) :- verb_group(B, A), 
derivationally_related_form(A, C), 
derivationally_related_form(C, D), hypernym(C, E), 
derivationally_related_form(D, E).

( ?e <derivationally_related_form> ?d ) ^ 
( ?c <derivationally_related_form> ?e ) ^ 
( ?c <hypernym> ?d ) ^ 
( ?c <derivationally_related_form> ?a ) ^ 
( ?b <verb_group> ?a ) ⇒ ( ?a <verb_group> 
?b )

Prolog (Popper)

RDFRules

Example of a complex recursive 
rule (where verb_group appears 
in both the head and body). The 
RDFRules example shown is highly 
reliable: it has a CWA Confidence 
of 1.0 and a Support of 84, 
meaning in all 84 cases where this 
pattern occurred, the conclusion 
was correct.
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Runtime vs. Number of learned rules

Popper is faster in non-recursive settings on this 
dataset but consistently times out (>1200s) when 
recursion is enabled. 

RDFRules generates significantly more rules, reflecting 
its exhaustive mining approach compared to Popper's 
minimal program synthesis.
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Performance on non-recursive tasks
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Performance on non-recursive tasks
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Performance on recursive tasks
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Performance on recursive tasks
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Case study: KG-Microbe (Santangelo et al. 2025) 

• Motivation: Understanding of complex interactions 

between microbes, their environment, and human 

health

• A microbe-centric knowledge graph designed for linked 

(relational) microbial data

• 1,368,732 nodes and 2,763,211 edges
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Task Definition

• Goal: Find new information about possible cultivation media 

for microbes

• Task focused on a specific list of 40 media recommended by 

domain experts

• Knowledge graph rule mining task and building classifier → 

RDFRules
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Top 5 media based on frequency

Medium ID Medium Name Occurrence

65 GYM STREPTOMYCES MEDIUM 1920

214 BACTO MARINE BROTH (DIFCO 2216) 1634

693 COLUMBIA BLOOD MEDIUM 1284

830 R2A MEDIUM 1278

92
TRYPTICASE SOY YEAST EXTRACT 

MEDIUM
1217
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Rule Discovery: Approach

• Objective → classify media connected to a microbe by 

the biolink:occurs_in predicate

• This relationship signifies the environment where the microbe was 

found, lives, or was grown (e.g., natural substance or lab medium)

• 40 separate mining procedures were run, one for each of the 

target media

• merged 40 rulesets into 2.64 million rules, further reductions resulted 

in ruleset consisting of 3,779 rules

• Rules found a prediction for all 407 test cases
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Prediction Example: Gemella sanguinis

• The mined rule predicts the medium Columbia blood medium 

for a microbe that consumes D-mannitol, has a coccus cell 

shape and is capable of pyroglutamyl-peptidase I

( ?a biolink:consumes obo:CHEBI_16899 ) ∧
( ?a biolink:has_phenotype
cell_shape:coccus ) ∧
( ?a biolink:capable_of EC:3.4.19.3 ) 
⇒ ( ?a biolink:occurs_in medium:693 )

RDFRules
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Case Study: KG-COVID-19 (Reese et al. 2021)

• Motivation: Consolidating biomedical data to find drug 

repositioning candidates for COVID-19

• Graph contains information on COVID-19, human proteins, 

genes, chemical compounds, drugs, and related scientific 

literature

• 377,482 nodes and 21,433,063 edges

• Graph size reduced to process with available resources

• Metadata removal, missing triples imputation using high confidence 

rules
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Task (2A) Definition

• Goal: Perform a mechanistic deep-dive on a specific set of 

drugs

• Objective: Find drugs that m-interact with ACE1 and, via an 

intermediary, interact with ACE2 they link by identifying 

shared properties or common third proteins

• Knowledge graph rule mining task → RDFRules

• Result contained three rules
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Uncovering the Core RAS Pathway

• The identified drugs are Angiotensin II Receptor Blockers 

(ARBs)

( ?b <interacts_with> <Q9BYF1> ) ∧
( ?a <molecularly_interacts_with> ?b ) ∧
( ?a <category> <Drug> ) ∧
( ?a <molecularly_interacts_with> <P30556> 
) 
⇒ ( ?a <molecularly_interacts_with> 
<P12821> ) RDFRules
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Task (2B) Definition

• Goal: Analyze common characteristics of all entities (not just 

drugs) that directly interact with both ACE1 and ACE2

• Objective: Move beyond simple pairwise interactions to find 

significant, higher-order relationships

• Knowledge graph rule mining task → RDFRules
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Surfacing a Core Biological Axis

• The rule with the highest support captures a critical triangular 

relationship at the nexus of the Renin-Angiotensin and Nitric 

Oxide systems

⇒ ( ?a <molecularly_interacts_with> 
<P12821> )
( ?a <interacts_with> <Q9BYF1> ) ∧
( ?a <interacts_with> <P29475> ) 
⇒ ( ?a <interacts_with> <P12821> ) 

RDFRules
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Conclusion
• popper2rdf and rdf2popper provides first insight at bridging the gap between the 

worlds of ILP and RDF rule mining

• The main contribution is providing the community with the first practical, open-
source tools to make these powerful paradigms interoperable

• The tools were tested on four benchmark datasets and results show that 
transformation is viable and effective for enabling interoperability for declarative 
relational data

• The utility of these tools was demonstrated in a comparative experiment on the 
WN18RR benchmark dataset, which highlighted the distinct strengths of each 
paradigm

• ILP (Popper): On non-recursive tasks, Popper was significantly faster and more scalable 
than RDFRules as the data size increased, 

• However, RDFrules generated more rules, which may lead to better predictive performance

• RDF Rule Learning (RDFRules): RDFRules successfully handled large-scale recursive rule 
learning, a task where Popper timed out at all sample sizes, on non-recursive tasks, 
RDFRules was slower but learned a substantially larger number of rules
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Conclusion

• Practical case studies demonstrating the utility of rule mining on 
real-world knowledge graphs:

• KG-Microbe: An analysis of the KG-Microbe graph used RDFRules to find 
new information about microbial cultivation media by building classifier to 
predict media for microbes

• "Columbia blood medium" for microbes based on specific phenotypic and metabolic 
traits (e.g., Gemella sanguinis consuming D-mannitol, having a coccus shape, and 
pyroglutamyl-peptidase I capability)

• KG-Covid-19: A study on the KG-Covid-19 graph successfully identified 
drug repositioning candidates

• The rules uncovered by RDFRules corresponded to known drug classes, such as 
Angiotensin II Receptor Blockers (ARBs) , and surfaced critical biological 
relationships, like the triangular nexus between the Renin-Angiotensin and Nitric 
Oxide systems
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Demo  - rdfrules.vse.cz

• Links:
• khrudkova/popper2rdf

• khrudkova/rdf2popper

https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/popper2rdf
https://github.com/khrudkova/rdf2popper/tree/main
https://github.com/khrudkova/rdf2popper/tree/main
https://github.com/khrudkova/rdf2popper/tree/main


fis.en.vsefis.vse.cz/english

42

References

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. 
Machine Learning,110(4):801–856, 2021.

Galárraga, L., Teflioudi, C., Hose, K., & Suchanek, F. M. (2015). Fast rule mining 
in ontological knowledge bases with AMIE++. The VLDB Journal, 24(6), 707-730.

Santangelo, B. E., Hegde, H., Caufield, J. H., Reese, J., Kliegr, T., Hunter, L. E., ... 
& Joachimiak, M. P. (2025). KG-Microbe-Building Modular and Scalable 
Knowledge Graphs for Microbiome and Microbial Sciences. bioRxiv, 2025-02.

Reese, J. T., Unni, D., Callahan, T. J., Cappelletti, L., Ravanmehr, V., Carbon, S., 
... & Mungall, C. J. (2021). KG-COVID-19: a framework to produce customized 
knowledge graphs for COVID-19 response. Patterns, 2(1).

Václav Zeman, Tomáš Kliegr, and Vojtěch Svátek. RDFRules: Making RDF rule 
mining easier and even more efficient. Semantic web, 12(4):569–602, 2021.



Name and surname of author

name.surname@vse.cz

Thanks for your attention


	Snímek 1: Bridging Relational Learning Paradigms, Relational Learning over Microbiological data
	Snímek 2: Presentation outline
	Snímek 3: Different formats, different methods, same results?
	Snímek 4: numeric-zendo1 example
	Snímek 5: popper2rdf - from Prolog atoms to RDF triples
	Snímek 6: Backgound knowledge atoms to RDF triples transformation table
	Snímek 7: popper2rdf – usage (in Jupyter notebook)
	Snímek 8: RDF triples to backgound knowledge atoms transformation table
	Snímek 9: rdf2popper – usage (in Jupyter notebook)
	Snímek 10: Transformation success
	Snímek 11: Metrics and datasets
	Snímek 12: Prolog → RDF Transformation
	Snímek 13: trains1
	Snímek 14: imdb3
	Snímek 15: numeric-zendo1
	Snímek 16: numeric-zendo2
	Snímek 17: Quantitative Evaluation: Prolog → RDF
	Snímek 18: Prolog → RDF → Prolog
	Snímek 19: numeric-zendo2 (Prolog → RDF → Prolog)
	Snímek 20: Quantitative Evaluation: Round-trip (P→RDF→P)
	Snímek 21: Experiment – WN18RR dataset
	Snímek 22: Experiment settings
	Snímek 23: Recursive rules
	Snímek 24: Runtime vs. Number of learned rules
	Snímek 25: Performance on non-recursive tasks
	Snímek 26: Performance on non-recursive tasks
	Snímek 27: Performance on recursive tasks
	Snímek 28: Performance on recursive tasks
	Snímek 29: Case study: KG-Microbe (Santangelo et al. 2025) 
	Snímek 30: Task Definition 
	Snímek 31: Top 5 media based on frequency
	Snímek 32: Rule Discovery: Approach 
	Snímek 33: Prediction Example: Gemella sanguinis 
	Snímek 34: Case Study: KG-COVID-19 (Reese et al. 2021) 
	Snímek 35: Task (2A) Definition 
	Snímek 36: Uncovering the Core RAS Pathway
	Snímek 37: Task (2B) Definition 
	Snímek 38: Surfacing a Core Biological Axis 
	Snímek 39: Conclusion
	Snímek 40: Conclusion
	Snímek 41: Demo  - rdfrules.vse.cz
	Snímek 42: References
	Snímek 43: Thanks for your attention

