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Introduction

= Physics Informed Neural Networks (PINN)

= Applications:

fluid mechanics
wave propagation
phase-filed modeling
Biomechanics

inverse problems




Introduction

= Motivation of work

= Time needed for the training of neural network is crucial

= |dea for improvement

= Speeding up the process of training the neural network

= Solution

= Usage of hierarchical matrices




Introduction

= One-dimensional advection-diffusion problem

d2u(z) du(r)

u € C2(0, 1) Lz +13 o 0,z € (0,1).

diffusion=¢ advection “wind"=1

Boundary du
conditions: —e——(0) +u(0) = 1.0, u(1) =0.

1.0

._H

08 PINNX)=U(X)

0.6 -

0.4

0.2° \

0.0 '
0.0 0.2 04 06 0.8 10 X

Fig. 1: PINN solution of the advection-diffusion problem for e = 0.1.




Introduction

Following the idea of PINN, we represent the solution as the neural network:
u(z) = PINN(z)=A,0(A,10(...0(A12+ By)...+ B,.1)+ B, (3)
We define the loss function for the residual of the PDE
2 TN
ec[’ PINN (z) g

-~ dPINN(z) \° |
LOSSppE(z) = (— a2 8 i ) (4)
We also define the loss function for the left boundary condition
TN 2
LOSSpco = (-e(u)c[li.V N (0)+ PINN(0) - 1.0) : (5)
and the loss funetion for the right boundary condition
LOSSpc1 = (PINN(1))?, (6)
The total loss function is defined by combining a weighted sum
LOSS =wppg Y (LOSSppe(z))® (7)
z€(0,1)
+wpco (LOSSpco(0))? (8)

+wpcy (LOSSpei(1))°. (9)




Introduction

Neural network with hierarchical matrices:

y = PINN(x) = Hno(Hn-1...H20(H1+b1) + b2) + ... + bn-1) + bn,

H. - hierarchical matrices,

oo™ ) u)- )

Fig. 2: Neural network with hierarchical matrices.

b, - vectors




Matrix compressio

= |dea

= Sparse matrix occurring in simulations contains low-rank blocks
Sparse matrix can be divided into smaller blocks — submatrices

For each block— submatrix:

- some number of rows, columns,
- singular values

n

run the SVD algorithm, which shows them as a product of

rows and columns related to small singular values can be zeroed.
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Matrix compression




The compressed matrix-vector multiplication

Fig.4: The idea of SVD compressed matrix by vector multiplication.
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The compressed matrix-vector multiplication

Algorithm 1 MultiplyMatrixByVector

Require: node T, vector to multiply v

if T.sons = () then
return T.U * (T.V %= v);

end if
numBows =number of rows of vector v;
vy = v(1 : floor(numRows/2),:) //first part of vector v
v2 = v( floor(numRows /2 4+ 1) : numRows, :) [/second part of vector v
resl=MultiplyMatrixByVector(T.children(1),v1)
res2=MultiplyMatrixByVector(T.children(2),v2)
res3=MultiplyMatrixByVector(T.children(3),v1)
resd=MultiplyMatrixByVector(T.children(4),v2)
/ /calculate the final result of multiplication
reslres2=resl+res2
resdresd=res3+resd
return result=[reslres2;res3res4]
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Using the algorithm of hierarchically compressed
matrix-vector multiplication to speed up neural
network training

= Assumption

= The matrix of size nxn

= Form of representation:

= hierarchically compressed,

= off-diagonal blocks on each level of hierarchy

= represented by SVD compressed blocks
= Rank=1

= remaining blocks

* Divided smaller blocks
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Using the algorithm of hierarchically compressed
matrix-vector multiplication to speed up neural
network training

Number of entries:
2 *xn *log2(2 * n)

r'd Vector’s size:

_: 2 *nx*log2(2 * n)
-

Fig. 5: Compressed matrix and its vector representation.
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Using the algorithm of hierarchically compressed
matrix-vector multiplication to speed up neural
network training

= acceptable solutions:

= LOSS of the order of 0.001.

= Test’s settings:

= No. of internal neural network layers:
= 2

= Matrices’ size n (nxn):
= 32,64, 128, 256, 512.

= Learning rate:
= 0,02

= Number of epochs:

= 1000
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Results

Table 1: Number of epochs and number of FLOPs of classic multiplication, Table 2: Number of epochs and number of FLOPs of hierarchical multiplication,

learning rate 0.02, LOSS 0.001

matrix sizelnumber of epochs number of FLODPs
- classic multiplication |- classic multiplication
32 620 257,761,280
G4 252 419,069,952
128 246 1.629,716,430
256 - -
512 - -

learning rate 0.02, LOSS 0.001

matrix size|number of epochs number of FLOOPs
hierarchical multiplication|hierarchical multiplication

32 539 77,172,480

64 658 222,604,928

128 427 333,634,560

256 836 1,478,905,344

512 382 1,512,684,544
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Results

LOSS FUNCTION (RUNNING AVERAGE)
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Fig. 6: Left panel: convergence of traiming of the fully connected neural network

with 2 layers, 32 neurons per layer. Right panel: convergence of traimning of the

fully connected neural network with 2 layers, 32 neurons per layer using com-
pressed matrix.
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Results

LOSS FUNCTION (RUNMNING AVERAGE) LOSS FUNCTION [RUNNING AVERAGE)
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Fig. 7: Left panel: convergence of training of the fully connected neural network
with 2 layers, 64 neurons per layer. Right panel: convergence of training of the
fully connected neural network with 2 layers, 64 neurons per layer using com-
pressed matrix.
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Results

LOSS FUNCTION (RUMNING AVERAGE) LOSS FUNCTION (RUNNING AVERAGE)
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Fig. 8: Left panel: convergence of training of the fully connected neural network
with 2 layers, 128 neurons per layer. Right panel: convergence of training of
the fully connected neural network with 2 layers, 128 neurons per layer using
compressed matrix.
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Results
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Fig.9: Left panel: convergence of training of the fully connected neural network
with 2 layers, 256 neurons per layer. Right panel: convergence of training of
the fully connected neural network with 2 layers, 256 neurons per layer using
compressed matrix.
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Conclusions

- Process of training of neural network — speeded up
- Numbers:
- Speed-up rate:
- 2-5times
- memory storage reduction rate:
- 3-20times
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Thanks for your attention
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Q&A
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