
Advanced Measures for Empirical Testing

Joachim Baumeister
Institute of Computer Science, University of Würzburg, Germany

joba@uni-wuerzburg.de

Abstract

Empirical testing is still the most popular evaluation
method for the development of intelligent systems. Be-
sides classic forms of boolean testing of occurring so-
lutions for a given set of findings more refined meth-
ods are required for a thorough evaluation of real world
knowledge systems. We present extended precision and
recall functions for interactive knowledge systems that
are generalizations of the existing measures. Addition-
ally, we propose a visualization method for inspecting
the validation result for interactive systems. A case
study with a second opinion system from the medical
domain demonstrates the usefulness of the approach.

Introduction
In the context of quality management of (intelligent) sys-
tems we see that the empirical testing technique still denotes
the most important and most frequently applied method.
Empirical testing is simple and effective: previously solved
test cases with correct results are given as input to the sys-
tem and the derived results are compared with the expected
results that are given in the test cases. The derivation quality
is typically measured by precision/recall or the combining
F-measure.

As the original versions of these measures are sufficient
for many evaluation tasks we motivate that sometimes more
advanced versions of the precision and recall are needed to
meet the requirements of the evaluation process. We propose
two extensions:

1. The rated precision/recall that is able to compare solu-
tion states rather than the usual boolean occurrence of
states derived/not derived.

2. The chained precision/recall that not only takes into ac-
count the final solutions of a case but also the intermediate
solutions during a problem-solving process and is able to
weight intermediate solutions in comparison to the final
solution.

The paper is organized as follows: We introduce the
traditional evaluation measures precision and recall and

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

show its extensions rated precision/recall and chained pre-
cision/recall. We show that every extension is a true gen-
eralization of the traditional measure. Thereafter, we intro-
duce the visualization method DDTree that allows for an in-
tuitive visualization of empirical test runs. The usefulness
of these measures is demonstrated by a case study that was
conducted during the evaluation of a medial second-opinion
system for rescue missions. A discussion and outlook con-
cludes the paper.

Empirical Testing with Sequential Test Cases
We first define basic notions that are used throughout the
subsequent discussion of advanced testing measures.

Basic Notions
A (knowledge) system is typically defined by its possible
input and output elements. In the context of intelligent sys-
tems a possible input is often called finding and a possible
output is defined as a solution.
Definition 1 (Finding and Solution). Let I be the (universal)
set of observable input values. A tuple f = a : v is called a
finding, where a ∈ I is an input (attribute) and v ∈ dom(a)
is an assignable value. Let F be the universal set of findings,
and let S be the universal set of output values, i.e., solutions
derivable by the knowledge system. In the simplest case a
boolean value is assigned to a solution s ∈ S in order to
express the positive and negative derivation of the particular
output. For the refined case a more expressive state range is
assigned to s, for example to additionally represent a state
of its possible derivation.

Empirical testing usually runs a collection of test cases,
where the expected results of each test case is known be-
forehand. Formally, a test case can be defined as follows.
Definition 2 (Test Case). A test case tc stores a list of find-
ings and a collection of derived solutions:

tc =
(
(f1, . . . , fp), (s1, . . . , sq)

)
, (1)

where fi ∈ F is a finding and si ∈ S is a positively derived
solution.

Since there is no order of the derived solutions in the
test case every derived solution is equally important. Often
it is beneficial to specify a more refined confirmation state

of the particular solutions, for example, some solutions are
only derived as possible outputs whereas other solutions are
strongly derived as a suitable solution. For this reason we
introduce the notion of a rated test case.
Definition 3 (Rated Test Case). A rated test case rtc stores
a list of findings and a collection of rated solutions and is
defined as follows:

rtc =
(
(f1, . . . , fp), (rs1, . . . , rsq)

)
, (2)

where fi ∈ F is a finding and rsi = (si, ri) is a rated
solution, i.e., a rating ri assigned to a solution si ∈ S. The
specified ratings ri are expected to be derived by a valid
knowledge base when entering the findings fi given in rtc.

Possible domains for ratings are real values in [0, 1], for
example to represent probabilities, but also symbolic values
like {undefined, excluded, suggested, established}. It is easy
to see that for a rating ri = established (∀i = 1, . . . , q) a
rated test case collapses to a standard test case.

Although the use of rated test cases improves the testing
possibilities it is often not sufficient to test the derivation
quality of the knowledge base at the end of each test case,
but also to test the derivation state during the execution of a
test case. In order to enable this type of testing we partition
the test case into a sequence of (partial) test cases, where
each partial test case stores its findings entered in this phase
and the solutions (with ratings) derived so far. More for-
mally we introduce the notion of a sequential test case.
Definition 4 (Sequential Test Case). A sequential test case
seq is defined as a list of rated test cases rtci

stc = (rtc1, . . . , rtcn) ,

where a rated test case rtci depends on its predecessors rtcj

with j < i.
We see that a sequential test case partitions a standard test

case into distinct rated test cases, where every case contains
an ordered list of findings fi,j that are supposed to be entered
by a user in the given order. Additionally, a rated test case
stores a set of solutions si,j with their corresponding ratings
that are expected to be derived by a valid knowledge system
after entering the findings ∪k=1,...,j fi,k, i.e., the findings
fi,j and all preceding findings defined in the sequential test
case.

It is worth noticing that the order of the finding se-
quences defined in a sequential test case is explicit and im-
portant. Thus, every sequence seq i depends on its prede-
cessor seq i−1, especially with respect to the ratings of the
particular solutions. The rating of solutions can also depend
on findings that were entered in previous cases.

A sequential test case stc = (rtc1, . . . , rtcn) is a general-
ization of a rated test case if the sequential test case contains
only one finding sequence, i.e., for n = 1.

Simple Validation Measures
Traditionally, the quality of the derived solutions is com-
puted using standard measures such as precision, recall, and
the combined F-measure. In literature the measures simply
compare the set of positively derived solutions der with the
set of expected solutions exp.

Definition 5 (Precision). Let tc =
(
(f1, . . . , fp), exp

)
be a

test case with the expected solutions exp ⊆ S and let der ⊆
S the set of actually derived solutions. Then, the precision
of der and exp is defined as follows:

precision(der , exp) =






| der ∩ exp |
| der | if der %= {} ,

1 if der = exp = {} ,
0 otherwise.

(3)
In summary, the precision measures how many of the de-
rived solutions were actually expected to be derived by the
case tc. Analogously, the recall of a test case is defined as
follows.
Definition 6 (Recall). Let tc =

(
(f1, . . . , fp), exp

)
be a test

case with the expected solutions exp ⊆ S and let der ⊆ S
the set of actually derived solutions. Then, the recall of der
and exp is defined as follows:

recall(der , exp) =
{
|der ∩ exp|

/
|exp| if exp %= {} ,

1 otherwise.
(4)

The recall measures how many expected solutions were ac-
tually derived by the knowledge base. For multiple solu-
tions it is usually interesting to provide a single metric that
combines the precision and recall. Often, the F-measure is
applied in such a context.
Definition 7 (F-Measure). Let tc =

(
(f1, . . . , fp), exp

)
be

a test case with the expected solutions exp ⊆ S and let
der ⊆ S the set of actually derived solutions. Then, the
F-measure of der and exp is defined as follows:

fβ(der , exp) =

=
(β2 + 1) · precision(der , exp) · recall(der , exp)

β2 · precision(der , exp) + recall(der , exp)
(5)

The F-measure computes the geometric mean of the preci-
sion and the recall of the derived solutions. Often, we use the
f1 measure, where precision and recall are equally weighted.

Extended Validation Measures
When using sequential test cases for empirical testing we
need to take into account that we also have intermediate so-
lutions defined in each finding sequence of a sequential test
case. Furthermore, the traditional measures only perform a
boolean check on the derived and expected solutions. Thus,
only the (non-)derivation of the solutions is compared but
not their actual rating. However, we often see a more pre-
cise rating of solutions, for example in Bayesian networks
solutions are rated by probabilities p ∈ [0, 1]. In heuristic
decision trees a solution can be derived either as unclear,
excluded, suggested or established. In summary, a refined
set of measures need to take the following into account:
1. Comparison of rated solutions instead of a boolean inter-

section.
2. Evaluate the quality of a chained case sequences instead

of one single test case.

Concerning the first issue we introduce a “rated” version
of the precision/recall measures that generalize the standard
measures but is applicable to arbitrary solution ratings. We
further extend the measures by a sequentialized version of
precision/recall in order to handle the second issue.

Rated Precision/Recall
Definition 8 (Rated Precision). Let exprs ⊆ S be the ex-
pected solutions of a rated test case and let der rs ⊆ S be
the collection of actually derived solutions. Then, the rated
precision is defined as

precisionrs(der rs , exprs) =

=






precrs(der rs , exprs) if der rs %= {} ,
1 if der rs = {} and exprs = {} ,
0 otherwise,

(6)

where the precrs is defined by

precrs(der rs , exprs) =

=

∑
s∈∩(derrs ,exprs)

rsim
(
r(s, der rs), r(s, exprs)

)

| der rs | . (7)

Instead of simply intersecting the set of derived solu-
tions with the set of expected solutions we use the function
∩(der rs , exprs) to extract all solutions s contained in both
rated solutions sets by

∩ (der rs , exprs) =

=
{

s ∈ S
∣∣ ∃(s′, rd) ∈ der rs ∧∃(s′, re) ∈ exprs ∧ s = s′

}
.

(8)

For all these solutions s we compute a similarity between the
rating of s in der rs and the rating of s contained in exprs
by using the function rsim(r(s, der rs), r(s, exprs)), where
r(s, rs) yields the rating of solution s in the rating set rs:

r(s, rs) =
{

r for (s, r) ∈ rs ,
0 else.

(9)

The rated similarity function needs to be defined appro-
priately for every possible domain of ratings. It is important
to notice that rsim always has to return a value v ∈ [0, 1]. If
not defined then we can simply use the individual similarity
function

rsimi

(
r(s, der rs), r(s, exprs)

)
=

=
{

1 if r(s, der rs) = r(s, exprs) ,
0 else.

(10)

When using the individual similarity function the rated sim-
ilarity reduces to a boolean comparison as already known
fromt the standard precision measure (see Equation 3).

Example. In the following we give an example for a possi-
ble rated similarity function that could be used for symbolic

ratings with the following domain R = {unclear, excluded,
suggested, established}.

rsim
(
r(s, der rs), r(s, exprs)

)
=

=






1 if r(s, der rs) = r(s, exprs) ,
0.8 if r(s, der rs) = suggested∧

r(s, exprs) = established ,
0.5 if r(s, der rs) = established∧

r(s, exprs) = suggested ,
0 else.

(11)

We can see that the function gives a better similarity when
the expected result is better that actually derived. In some
applications the counter-intuition may be appropriate.
Definition 9 (Rated Recall). Let exprs ⊆ S be the expected
solutions of a rated test case and let der rs ⊆ S be the col-
lection of actually derived solutions. Then, the rated recall
is defined as

recallrs(der rs , exprs) =

=
{

recrs(der rs , exprs) if exp %= {} ,
1 otherwise,

(12)

where the recrs is defined by

precrs(der rs , exprs) =

=

∑
s∈∩(derrs ,exprs)

rsim
(
r(s, der rs), r(s, exprs)

)

| exprs | .

As already introduced in the context of Definition 8 we
reuse the function ∩(der rs , exprs) defined in Equation 8
and the rated similarity function rsim(. . .) discussed be-
fore. For the individual similarity function given in Equa-
tion 10 the rated recall recallrs is equivalent to the standard
recall measure recall .

Chained Precision/Recall Based on the extensions of pre-
cision/recall made above we further generalize the measure
to evaluate the quality of a sequential test case.
Definition 10 (Chained and Rated Precision). Let stc =
(rtc1, . . . , rtcn) be a sequential test case. Every rated
test case rtci stores its expected solutions expi,rs at
the phase i of the test case stc. Accordingly, we
define der i,rs to be the actually derived solutions in
phase i. Then, we define the chained and rated preci-
sion for DERrs = (der1,rs , . . . , dern,rs) and EXPrs =
(exp1,rs , . . . , expn,rs) as follows:

precisionrs,c(DERrs,EXPrs) =

=
∑

i=1...n wp(i) · precisionrs(der i,rs , expi,rs)∑
i=1...n wp(i)

, (13)

where wp(i) ∈ [0, 1] for all i ∈ 1, . . . , n defines the weight
of the intermediate solutions in phase i.

It is easy to see that for wp(i) = 1 and n = 1 the chained
and rated precision precisionrs,c yields the rated precision
precisionrs introduced in Definition 8.

The appropriate specification of the weights depends on
the particular application domain. We see two typical possi-
bilities to define the weights for the chained and rated preci-
sion:
• Equi-Important: The quality of the derived solutions is

equally important for every phase, i.e., wp(i) = 1 for all
i = 1, . . . , n.

• Inverse-Annealing: The quality of the derived solutions
becomes more important in later phases. Then, we define
wp(i) = i/n for all i = 1, . . . , n.
The definition of the chained and rated recall is analogous

to the definition of the chained and rated precision.
Definition 11 (Chained and Rated Recall). Let stc =
(rtc1, . . . , rtcn) be a sequential test case. Every rated
test case rtci stores its expected solutions expi,rs at
the phase i of the test case stc. Accordingly, we
define der i,rs to be the actually derived solutions in
phase i. Then, we define the chained and rated re-
call for DERrs = (der1,rs , . . . , dern,rs) and EXPrs =
(exp1,rs , . . . , expn,rs) as follows:

recallrs,c(DERrs,EXPrs) =

=
∑

i=1...n wr(i) · recallrs(der i,rs , expi,rs)∑
i=1...n wr(i)

, (14)

where wr(i) ∈ [0, 1] for all i ∈ 1, . . . , n defines the weight
of the intermediate solutions in phase i.

In the context of the chained and rated recall we are able to
specify a distinct weighting function wr in order to define a
different weighting scheme compared to the weighting of the
computed precisions. However, often the same weighting
function is used for wp and wr .

Testing Visualization with DDTrees
The analysis of a testing session can be improved by visu-
alizing its outcomes. One possible way is the adaptation of
the Unit-Testing metaphor that uses a colored bar indicating
the overall outcome. While running the suite of test cases
the color of the bar remains green until an error in a test
case occurs. In consequence, a red bar shows that at least
one failure has been reported in a test case. In Figure 1 the
empirical testing tool of the knowledge development envi-
ronment d3web.KnowME (Baumeister and others 2008) is
shown. Here a medical knowledge base is tested against a
test suite with 5045 test cases.

Although the metaphor allows for a quick and intuitive
analysis of the overall result it lacks when errors occur and a
deeper analysis becomes important. Often a debugging ses-
sion, e.g., (Zacharias and Abecker 2007), of the erroneous
test case is initiated, but the context of the test case with
respect to similar (non erroneous test cases) is difficult to
perceive.

In the past it has been proposed to visualize the test suite
as a tree (Baumeister, Menge, and Puppe 2008). In this pa-
per we revive the approach since it allows to interactively
analyze and evaluate the validation results. For a knowledge
system with an interview logic it also allows for the intuitive

Figure 1: Empirical testing of a knowledge base using the
unit testing metaphor with green/red colored bars.

analysis of the dialog behavior, thus verifying the interview
knowledge.

Introduction to DDTrees
In summary, a DDTree arranges the test cases of a test suite
in a (poly-)tree. Every test case is represented by a path from
the root to a leaf of the tree. A node of such a path contains
the following information:
1. The previously asked question (for simpler reference)
2. The currently derived solutions ranked according their

status
3. The currently asked question; indeed the node represents

this currently active input
Every arc starting from a node and its currently active in-

put i is labeled with a possible/allowed answer v of the input
i. Thus, a node i and an outgoing arc with label v defines a
possible finding i : v contained in the test case.

Therefore, a test case with its intermediate results and its
interview behavior is retrieved by navigating from the root
of the tree to one leaf. The leaf usually contains only the pre-
viously asked input and the final solutions of the particular
case.

An example DDTree is shown in Figure 2. For instance,
input Question 1 is initially asked; for finding Question 1 :
yes the system derives the solutions Solution 2 and Solution
3 with 10 points, thereafter Question 4 is asked. If this in-
put is answered with yes then Solution 2 is rated with 1009
points, whereas Solution 3 remains at 10 points.

For larger DDTrees the entire tree is typically cut in equi-
with subtrees in order to allow for a simple analysis.

The technique considers two important issues of the vali-
dation task: the indication/inspection of erroneous cases and
the validation of new cases that emerged from the modifica-
tion/extension of the knowledge base. In summary, a tree is
generated from the suite of test cases. Correct cases and their
arcs, respectively, are greyed-out, whereas the arcs of erro-
neous cases are highlighted in red color. Yet un-inspected

Initfrage = yes

Question 1

Question 1 = yes

Solution 3 10

Solution 2 10

Question 4

yes

Question 1 = no

Solution 3 10

Solution 2 10

Solution 1 10

Question 3

no

Question 4 = yes

Solution 2 1009

Solution 3 10

yes

Question 4 = no

Solution 1 1004

Solution 3 10

Solution 2 10

no

Question 3 = normal

Solution 1 1009

Solution 2 15

Solution 3 10

normal

Question 3 = high

Solution 2 1009

Solution 1 15

Solution 3 10

high

Question 3 = low

Solution 1 15

Solution 2 12

Solution 3 10

Question 2

low

Question 2 = green

Solution 2 1011

Solution 1 15

Solution 3 10

Question 2 = red

Solution 1 1014

Solution 2 17

Solution 3 10

Question 2 = blue

Solution 3 1009

Solution 1 15

Solution 2 12

green red blue

Figure 2: An example DDTree: Each test case is represented by a path from the root to a leaf of the tree. Erroneous cases are
labeled with red arcs.

cases are not highlighted at all and printed normally. In this
way, the developer can grasp the following tasks in a simple
and intuitive manner:
1. Acknowledge correct cases: the developer easily identi-

fies the correct cases since their arcs are greyed-out. Like
the green bar shown in Figure 1 the DDNet approach
gives an immediate feedback of the system’s validity. The
more grey the tree is drawn the more valid it appears to the
developer.

2. Verify new cases: the developer inspects the new cases
(not highlighted) and marks them, if correct. Otherwise,
the knowledge base needs to be refined in an appropriate
way.

3. Analyze incorrect cases: the developer needs to inspect
incorrect cases that are highlighted in red color from the
beginning of the incorrect behavior. The preceding and
correct beginning of the case is not marked in red color.
Thus, the sub-sequence of the erroneous case is simple
to grasp. Since the adjacent and similar cases are also
depicted in the tree, the context of the erroneous case is
easy to understand.

Validation Process
The process of using DDTrees for evaluation is as follows:
1. Initialization: Create an initially empty collection of

previously reviewed cases PRC = { }.
2. Case Generation (optional): If a sufficient test suite

is not available, we propose to generate the total cover
of test cases for a given knowledge base. Note that this
step can imply the combinatorial enumeration of all pos-
sible finding values, and is therefore not applicable in gen-
eral domains. However, it is quite appropriate in smaller

domains and knowledge bases using a decision tree rep-
resentation that restricts the meaningful combinations of
findings. Alternatively, general methods for test case gen-
eration can be applied, e.g., (Gupta and Biegel 1990;
Gonzalez and Dankel 1993; Knauf, Gonzalez, and Abel
2002).
• All possible cases are recorded using an automated in-

terview bot, i.e., we fill the set of recorded cases RC .
The bot simulates an interactive dialog with the knowl-
edge system by iteratively answering the possible val-
ues of the currently presented question. After providing
an answer to the current question, the bot recursively
retrieves the next follow-up question to be answered.
A new case is stored if no follow-up question is asked
by the system any more. During the simulation of an
interview the bot also stores the intermediate solutions,
that are derived during the problem-solving session.

3. Visualization: The test case suite is rendered using
a rooted tree graph drawing algorithm, for example
see (Sugiyama 2002). The arcs of new cases are not
highlighted in the tree, if they were not recorded before-
hand. These cases need to be manually inspected by the
developer. The sequences of the correct and previously
reviewed cases c ∈ PRC ∩ RC are greyed-out. The re-
maining cases were recorded previously but now show a
different derivation at some point in the case. Starting
from this point the cases are highlighted in red color in or-
der to call attention to the incorrect behavior of the system
in the context of this cases. The color of the arcs is com-
puted by the rated/chained precision and recall measures
that were defined in the previous section. For example the
right branch of the DDTree shown in Figure 2 depicted in

red color.
4. Manual review of the DDTree (optional): Here, only

previously unreviewed cases c /∈ RC need to be re-
viewed. Every unreviewed case, i.e., every path from the
root to a leaf, is manually inspected by a domain special-
ist (not necessarily the developer of the knowledge base).
For this step we recommend to print out the entire graph
on a poster in order to obtain a better overview of the inter-
view workflow. The classic review on a printed poster of-
fers a couple of benefits especially for domain specialists
not familiar with a concrete validation software. For ex-
ample, already traversed and reviewed paths can be easily
highlighted with a text marker without knowing a specific
software.

5. Storing the test suite: If all reviewed cases are inspected
successfully and are marked as correct by the domain spe-
cialist, then these cases are also stored in the test suite of
”previously reviewed cases” PRC .

6. Knowledge modification: After changing the knowl-
edge base, the previous steps are iterated starting with
step 2. All previously reviewed cases – that have not
changed in this iteration – are highlighted in the tree.
Thus, the domain specialist intuitively identifies the new
or changed paths in the tree that have to be reviewed in
this iteration.

Erroneous cases are highlighted in the visualization in an
orange color from the part of their erroneous behavior. The
visualization of such a case directly corresponds to the ex-
tended precision and recall measures defined above.

As an advantage of this visualization the domain special-
ist can easily “see” the context of the current case he/she
is inspecting, e.g., what will happen if the question is an-
swered differently, and which solutions are still possible at
this stage, etc. Furthermore, no computer skills are required;
the specialist can concentrate on the domain knowledge and
does not have to struggle with the keyboard/mouse.

Case Study
The presented work was successfully applied in the context
of the development and evolution of the medical knowledge
system Digitalys CareMate that is sold as a second-opinion
system in medical rescue service. Currently the knowledge
base of the system comprises about 200 findings indicating
the derivation of 120 solutions. About 1500 rules were de-
veloped to implement the interview strategy as well as the
rated derivation of the solutions. An improved version of
the knowledge formalization pattern heuristic decision tree
(Puppe 2000) was used to implement the system.

After a first review phase in March 2008, a final review
meeting of the release candidate of the system was real-
ized in July 2008 (lasting three days). The metaphor of the
DDTree was perceived to be very intuitive for the domain
specialist.

Further, the use of printed posters for inspecting the
(large) sub-trees helped significantly during the evaluation
phase. Since no computer was required the (almost unexpe-
rienced) domain specialist could start immediately to work
with text marker and pen. The intuitive “user interface”

was also beneficial for erroneous areas of the tree. For ex-
ample, when identifying errors the specialist could simply
write/draw some text/corrections on the paper, e.g., linking
a question to another sub-tree by drawing the edge manually
on the poster, making comments etc.

Discussion
For the development of intelligent systems empirical testing
denotes one of the most popular evaluation methods today.
In its classic form, the empirical test evaluates a collection
of test cases using the measures precision and recall. How-
ever, these measures only cover the overall outcome of the
case. We have motivated that the simple boolean evaluation
function is not always appropriate for real world application,
especially when erroneous cases should be inspected and re-
fined in a interactive manner.

We introduced extended measures for precision and re-
call, and we described a visualization technique that is capa-
ble for an interactive analysis and validation. The presented
work was successfully applied in a case study implementing
the evaluation of the real-world medical system Digitalys
CareMate. During the project we learned that the verica-
tion/validation step can be signicantly simplied by “analog
methods” that help the experts to step away from the original
system and to review the knowledge from a distinct perspec-
tive.

References
Baumeister, J., et al. 2008. The knowledge mod-
eling environment d3web.KnowME. open-source at:
http://d3web.sourceforge.net.
Baumeister, J.; Menge, M.; and Puppe, F. 2008. Visual-
ization Techniques for the Evaluation of Knowledge Sys-
tems. In FLAIRS’08: Proceedings of the 21th Interna-
tional Florida Artificial Intelligence Research Society Con-
ference, 329–334. AAAI Press.
Gonzalez, A. J., and Dankel, D. D. 1993. The Engineer-
ing of Knowledge–Based Systems – Theory and Practice.
Prentice Hall.
Gupta, U. G., and Biegel, J. 1990. A Rule–Based Intelli-
gent Test Case Generator. In Proceedings of the AAAI–90
Workshop on Knowledge–Based System Verification, Vali-
dation and Testing. AAAI Press.
Knauf, R.; Gonzalez, A. J.; and Abel, T. 2002. A Frame-
work for Validation of Rule-Based Systems. IEEE Trans-
actions of Systems, Man and Cybernetics - Part B: Cyber-
netics 32(3):281–295.
Puppe, F. 2000. Knowledge Formalization Patterns. In
Proceedings of PKAW 2000.
Sugiyama, K. 2002. Graph Drawing and Applications for
Software and Knowledge Engineers. World Scientific.
Zacharias, V., and Abecker, A. 2007. On Modern Debug-
ging For Rule-Based Systems. In Proc. of the 19th Interna-
tional Conference on Software Engineering & Knowledge
Engineering (SEKE’2007), 349–353.

