
Loan Processor Suite:
Transforming, Visualizing, and Querying

Datalog RuleML
Decision Rules

Decision CAMP, 4-6 November 2013

eBay Town Hall, San Jose, CA

 Harold Boley
Faculty of Computer Science

University of New Brunswick

Fredericton, NB, Canada

Training Session on RuleML Technology

How to Process a Loan?

“Loans are processed after a credit application is filled out
and turned in to the loan officer. This will start the
loan processing course, first by pre-qualifying the buyer
by reviewing the credit history and debt load
of the applicant.”

http://www.ask.com/question/how-to-process-a-loan

1

http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan
http://www.ask.com/question/how-to-process-a-loan

The Loan Processor Suite is a series of formal documents
for testing and learning Graph inscribed logic (Grailog),
RuleML, SVG, XSLT, POSL, OO jDREW, etc.
They exemplify Datalog RuleML decision rules and data facts
that are being transformed, visualized, and queried

2

See: http://ruleml.org/papers/Primer

 http://wiki.ruleml.org/index.php/Grailog#Test_Suites

Use Decision Rules and Data Facts!

http://ruleml.org/papers/Primer
http://ruleml.org/papers/Primer
http://ruleml.org/papers/Primer
http://wiki.ruleml.org/index.php/Grailog#Test_Suites
http://wiki.ruleml.org/index.php/Grailog#Test_Suites
http://wiki.ruleml.org/index.php/Grailog#Test_Suites

Decision Rule / Data Fact Architecture

loanProcessor

riskBrancher

matchingAssessor ratingAssessor

clientCategory

clientEvaluation

Decision

Rules:

Data

Facts:

3

See: http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.txt

http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.txt
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.txt

Joint Agile Development of
Decision Rules and Data Facts

The predicate loanProcessor considers requests with ?AmountAsk in (0 500000],

also fixing ?RiskLevel = 1000 and ?RatiMin = 0.8 in a call to riskBrancher:

Its "<" rule invokes matchingAssessor, hence clientCategory, for table lookup.

Its ">=" rule uses ratingAssessor, hence clientEvaluation, for deep analysis.

Possible outcomes are either failure, without ?AmountGrant binding, or success,

with ?AmountGrant bound to the loan.

4

Predicate definitions can flexibly combine rules and facts using
Prolog/Datalog-like POSL syntax (e.g., ":-" as the "IF" infix):
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353

http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353

Decision Rule: loanProcessor

loanProcessor(?Client,?AmountAsk,?AmountGrant) :-
 % loanProcessor(In,In,Out)

 greaterThan(?AmountAsk,0),
 % Positive loan request

 lessThanOrEqual(?AmountAsk,500000),
 % up to half a million.

 riskBrancher(?Client,?AmountAsk,?AmountGrant,1000,0.8).
 % ...,?RiskLevel,?RatiMin).

5

Decision Rules: riskBrancher

riskBrancher(?Client,?AmountAsk,?AmountGrant,
 ?RiskLevel,?RatiMin) :-

 lessThan(?AmountAsk,?RiskLevel),
 % Deterministic ...

 matchingAssessor(?Client,?AmountAsk,?AmountGrant).

riskBrancher(?Client,?AmountAsk,?AmountGrant,
 ?RiskLevel,?RatiMin) :-

 greaterThanOrEqual(?AmountAsk,?RiskLevel),
 % ... branch

 ratingAssessor(?Client,?AmountAsk,?AmountGrant,
 ?RatiMin).

6

Decision Rules: matchingAssessor

matchingAssessor(?Client,?AmountAsk,?AmountGrant) :-

 clientCategory(?Client,gold),
 % ?Client fact matches gold category

 multiply(?AmountGrant,?AmountAsk,0.75).
 % ?AmountGrant = ?AmountAsk * 0.75

matchingAssessor(?Client,?Amount,?Amount) :-
 % ?Amount = ?AmountGrant = ?AmountAsk IF

 clientCategory(?Client,platinum).
 % ?Client fact matches platinum category

7

Decision Rule: ratingAssessor

ratingAssessor(?Client,?AmountAsk,?AmountGrant,
 ?RatiMin) :-

 clientEvaluation(?Client,?AmountAsk,?Rating),
 % Data analysis binds ?Rating in [0,1].

 greaterThanOrEqual(?Rating,?RatiMin),
 % For ?Rating < ?RatiMin: not approved

 multiply(?AmountGrant,?AmountAsk,?Rating).
 % ?AmountGrant = ?AmountAsk * ?Rating

8

Data Facts: clientCategory

Facts store database table
which captures qualitative categories
of previous quantitative analysis

clientCategory(nilper,silver).

clientCategory(bold,gold).

clientCategory(claritum,platinum).

9

Data Facts: clientEvaluation

(Non-ground) facts cache ratings
from deep client data analysis,
which could be made conditional
on (currently free) ?AmountAsk

clientEvaluation(nilper,?AmountAsk,0.77).

clientEvaluation(bold,?AmountAsk,0.79).

clientEvaluation(claritum,?AmountAsk,0.91).

clientEvaluation(ralcitum,?AmountAsk,0.91).

10

Query Rules: negTest

negTest(1,?AG) :- loanProcessor(nilper,200,?AG).
 % Failure since 200 < 1000 and
 % no silver match

negTest(2,?AG) :- loanProcessor(nilper,1100,?AG).
 % Failure since 1100 > 1000 and
 % 0.77 < 0.8

negTest(3,?AG) :- loanProcessor(bold,1100,?AG).
 % Failure since 1100 > 1000 and
 % 0.79 < 0.8

negTest(4,?AG) :- loanProcessor(ralcitum,200,?AG).
 % Failure since 200 < 1000 and
 % no category

11

Query Rule: posTest

posTest(?AG1,?AG2,?AG3,?AG4) :-
 loanProcessor(bold,200,?AG1),
 % Success with ?AG1 = 150 since 200 < 1000 and
 % gold match
 loanProcessor(claritum,200,?AG2),
 % Success with ?AG2 = 200 since 200 < 1000 and
 % platinum match
 loanProcessor(claritum,400000,?AG3),
 % Success with ?AG3 = 364k since 400k > 1k and
 % 0.91 > 0.8
 loanProcessor(ralcitum,500000,?AG4).
 % Success with ?AG4 = 455k since 500k > 1k and
 % 0.91 > 0.8

12

Transforming POSL to RuleML/XML
 <Implies>
 <And>
 <Atom>
 <Rel>greaterThan</Rel>
 <Var>AmountAsk</Var>
 <Ind>0</Ind>
 </Atom>
 <Atom>
 <Rel>lessThanOrEqual</Rel>
 <Var>AmountAsk</Var>
 <Ind>500000</Ind>
 </Atom>
 <Atom>
 <Rel>riskBrancher</Rel>
 <Var>Client</Var>
 <Var>AmountAsk</Var>
 <Var>AmountGrant</Var>
 <Ind>1000</Ind>
 <Ind>0.8</Ind>
 </Atom>
 </And>
 <Atom>
 <Rel>loanProcessor</Rel>
 <Var>Client</Var>
 <Var>AmountAsk</Var>
 <Var>AmountGrant</Var>
 </Atom>
 </Implies>

loanProcessor(?Client,?AmountAsk,?AmountGrant) :-
 % loanProcessor(In,In,Out)

 greaterThan(?AmountAsk,0),
 % Positive loan request

 lessThanOrEqual(?AmountAsk,500000),
 % up to half a million.

 riskBrancher(?Client,?AmountAsk,?AmountGrant,1000,0.8).
 % ...,?RiskLevel,?RatiMin).

OO jDREW 1.0 POSL/RuleML Translator

13

Complete: http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.xml
 (View Page Source)

https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.xml
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.xml
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.xml

Visualizing RuleML/XML as Grailog/SVG
 <Implies>
 <And>
 <Atom>
 <Rel>greaterThan</Rel>
 <Var>AmountAsk</Var>
 <Ind>0</Ind>
 </Atom>
 <Atom>
 <Rel>lessThanOrEqual</Rel>
 <Var>AmountAsk</Var>
 <Ind>500000</Ind>
 </Atom>
 <Atom>
 <Rel>riskBrancher</Rel>
 <Var>Client</Var>
 <Var>AmountAsk</Var>
 <Var>AmountGrant</Var>
 <Ind>1000</Ind>
 <Ind>0.8</Ind>
 </Atom>
 </And>
 <Atom>
 <Rel>loanProcessor</Rel>
 <Var>Client</Var>
 <Var>AmountAsk</Var>
 <Var>AmountGrant</Var>
 </Atom>
 </Implies>

14

Grailog KS Viz

Complete: http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.svg
 (View Page Source)

http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.svg
http://www.cs.unb.ca/~boley/Grailog/LoanProcessor/LoanProcessor.svg

Querying with OO jDREW
15

See: OO jDREW 1.0 snapshot (Java Web Start)

https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads
https://github.com/OOjDREW/OOjDREW/downloads

Exercises

1) Give client ralcitum the category platinum
and explain what will happen for the positive
and negative tests

2) Augment the decision rules so that clients of
category silver (e.g., client nilper) will obtain
half of the amount asked. Hint: Model
category silver in analogy to category gold

3) Update the entire LP Suite (transformation,
visualization, and querying) using 1) and 2)

16

