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Abstract. Knowledge discovery in databases is typically an exploratory and semi–automatic process, with
a human–in–the–loop. Declarative approaches can considerably support this process, by formalizing and in-
cluding domain knowledge as well as declaratively specifying the data processing and analytics process. Then,
mediator frameworks provide powerful methods and approaches for orchestrating data processing and data
mining methods in order to support the full knowledge discovery cycle.
This paper proposes a novel approach for declarative knowledge discovery in databases enabling advanced
analytics via the concept of meta–learning. We specifically present how to declaratively apply meta–learning
and how to orchestrate knowledge discovery methods via the toolkit Declare. We utilize various methods from
knowledge discovery in databases (KDD) for detecting patterns in (relational or XML) databases. For these,
we present an example case for analyzing tennis data demonstrating the efficacy of the presented approach.

1 Introduction: Knowledge Discovery in Databases (KDD)

There exists a plethora of approaches and methods for knowledge discovery in databases (KDD) [28, 29] to
reveal previously unknown patterns, e. g., [51, 61], including classification as well as association rule mining [1,
34, 48], clustering [65, 77], and subgroup discovery [3, 38, 76] as prominent examples. A current trend is to
combine their strengths by so–called orchestration via a mediator framework. Orchestration combines different
analysis methods/learning algorithms into a pipeline for knowledge discovery, e. g., [41,62]. For the preprocessing
of the data (selection and transformation) and the postprocessing of the patterms (evaluation and presentation),
declarative logic programming techniques can be very useful. The application of various methods and tools for
data mining can be orchestrated and the selection and transformation as well as the evaluation and presentation of
the patterns and the data analytics can be supported by declarative methods, e.g. from logic programming. Here,
specifically the declarative toolkit Declare can be used as mediator to put the building blocks together. A possible
KDD architecture is shown in Figure 1.

In knowledge discovery, exploratory data analysis is an important approach for getting first insights into
the data. With this, the incremental knowledge discovery process is guided, since typically the goal of the meth-
ods is not only an actionable model, but also a human interpretable set of patterns [50]. In such contexts, declar-
ative approaches can be used for formalizing interesting criteria, constraints, as well as for modelling common
processes and data analysis patterns in a declarative and orchestrated knowledge discovery approach. Here, the
notion of meta–learning via declarative programs is an important and flexible concept: While constraints and
interestingness criteria can be formalized in a declarative way, these mostly address static criteria so far. In this
paper, we address dynamic orchestration which is implemented via meta–learning in an iterative and incremental
process. As shown in Figure 1, in the pattern mining and analysis step we can apply meta–learning in order to
apply dynamic changes and refinements on the orchestration process. We will demonstrate this approach in an
example case for analyzing tennis data.

The rest of the paper is organized as follows: Section 2 introduces background and related work. After that,
Section 3 presents our approach. Next, Section 4 discusses our example case. Finally, Section 5 concludes with a
summary and interesting directions for future work.
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Fig. 1. KDD Architecture and Meta-Learning Integration

2 Background and Related Work

If the user knows which queries to ask to the database, then online analytical processing (OLAP) typically uses
aggregation queries in SQL (SUM, AVG, MIN, MAX) to process spreadsheets (data cubes). But, frequently we
are drowning in data, but starving for knowledge and the user does not know which patterns to search for in the
database. In such cases, exploratory approaches for data mining and knowledge discovery can be applied.

Overall, in such contexts the goal in relational data mining is to find highly scalable algorithms, that can
also be applied to reveal patterns in very large amounts of data. Furthermore, data mining methods are commonly
applied to obtain a set of novel, potentially useful, and ultimately interesting patterns from (large) data sets cf. [27].
This can be achieved e. g., utilizing exploratory data mining techniques like association rule mining or subgroup
discovery, as summarized below. Previously unknown patterns in the knowledge can be found without querying
by statistical methods. e. g., repeated splitting of a relational table w.r.t. entropy functions produces patterns in
the form of decision trees and classification rules. Association rules can be derived using the well–known A
Priori–Algorithm for frequent itemsets. A classification/association rule r is an uncertain rule over attribute=value
pairs Li = (Ai = Vi) with a support s and a confidence c in the form of an implication L1 ∧ . . . ∧ Ln

s,c
=⇒

Ln+1 ∧ . . . ∧ Lm. For larger tables with many attributes or values, usually many rules are derived, and the
knowledge engineer has to investigate them.

The K–Means–Algorithm [49] clusters groups of similar (logically related) objects, requiring the number of
clusters k as a parameter and a distance measure for estimating distances between pairs of objects.

The SD–Map algorithm [9,44] for subgroup discovery [3,38,76] aims at finding interpretable and interesting
patterns, i. e., patterns describing subsets of a dataset that are interesting as estimated by a quality function. That
is, in contrast to association rules, subgroups are discovered by such a quality function which can be flexibly
defined. In subgroup discovery, a database D = (I, A) is given by a set of instances I and a set of attributes
A. For nominal attributes, a basic pattern (ai = vj ) is a Boolean function I → {0, 1} that is true if the value
of the attribute ai ∈ A is equal to vj for the respective instance. The set of all basic patterns is denoted by Σ.
A subgroup description or (complex) pattern is given by a set P = {p1, . . . , pl}, pi ∈ Σ, i = 1, . . . , l of basic
patterns, interpreted as a conjunction p1∧. . .∧pl,with length(P) = l. A pattern can thus also be interpreted as the
body of a rule. The rule head then depends on the property of interest, e. g., for a binary target concept T on a basic
pattern selT = t. A subgroup SP = ext(P) = { i ∈ I|P(i) = t }, is the set of all instances that are covered by the
subgroup description P . In a top–k setting, a subgroup discovery algorithm returns the top–k subgroups according
to a selectable interestingness measure q: 2Σ → R, cf. [3]. For a binary target concept, e. g., the size n := ext(P)
of a subgroup described by the pattern P , i. e., its support, and the share tP of the target concept in the subgroup,
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i. e., its confidence, are combined by the interestingess measures qS as follows: qS(P) = n · (tP − t0), where t0
denotes the (default) share of the target concept in the database P , or by the Lift quality function qL(P) = tP

t0
. In

general – besides those already mentioned quality functions – many quality functions for a single target feature,
e. g., in the binary or numerical case, trade off the size n = |ext(P)| of a subgroup, and the deviation tP − t0.
Thus, standard quality functions are of the form qa(P) = na · (tP − t0), a ∈ [0; 1] . For binary target concepts,
this includes, e. g., a simplified binomial function q0.5a for a = 0.5, or the Piatetsky-Shapiro quality function q1a
with a = 1, cf. [3].

Exceptional model mining [3, 26] can be seen as a variant of subgroup discovery, focusing on more complex
quality functions, i. e., considering complex target models, like comparing regression models or graph struc-
tures [5]. Essentially, exceptional model mining tries to identify interesting patterns with respect to a local model
derived from a set of attributes, cf. [24, 25]. For exceptional model mining, a model consists of a specific model
class (e. g., a regression or graph–structured model, cf. e. g., [5, 24, 25]), requiring a specific quality function.
It applies model parameters which depend on the values of the model attributes in the instances of the respec-
tive subgroup. The attributes consist of two (usually non–overlapping) sets of describing attributes and model
attributes. The goal of exceptional model mining is then to identify patterns, using a specific quality function, for
which the model parameters differ significantly from the parameters of the model built from the entire dataset.
For a more detailed discussion we refer to [26].

Association rule mining, subgroup discovery and exceptional model mining are prominent methods for local
exceptionality detection that can be configured and adapted to various analytical tasks. We can, for example, focus
on more complex data such as graphs or sequences, where, e. g., description–oriented community detection using
subgroup discovery can be applied, cf. [5]. For providing both structurally valid and interpretable communities
we utilize the graph structure as well as additional descriptive features of the graph’s nodes. Furthermore, we can
focus on sequential patterns [57] as well as temporal episodes [69] which can both be tackled using a combination
of pattern mining and declarative techniques.

In addition, we can make use of condensed or concise representations, which have been first developed in the
the field of association rules. This relates to frequent item sets for which condensed representations can be applied
in order to reduce the size of the set of association rules that are generated and presented (e. g., [13,20,58,59,64]).
These representations are used for the (implicit) redundancy management, since then the condensed patterns also
describe the specifically interesting patterns. In this case, the efficiency of the association rule discovery method
can also be increased significantly, if the redundancy management is directly incorporated into the algorithm;
otherwise, it can typically be applied in a post-processing step. Besides association rules, these techniques can
then also be generalized for frequent patterns (cf. [36, 56]). In general, based upon set-theory, condensed repre-
sentations include closed-sets, free-sets and (non-)derivable sets. We refer to [36, 56] for a detailed description.
Furthermore, according adaptations can be applied for subgroup discovery as well [2,32]. In our context, Declare
offers flexible post-processing options on the obtained set of patterns, e. g., using subsumption as discussed be-
low. With the declarative functionality of Declare, flexible post analysis of the obtained patterns and knowledge
can be implemented, e. g., [45]. In particular, this allows for implementing declarative and knowledge-driven
approaches, for example, including background knowledge for the refinement of the discovered set of patterns,
e. g., [4,11,35,52], or for considering causal relations [10,19,23,39,40,53,55]; then, for example, we can identify
the subgroups which are causal for the target concept.

In general, local exceptionality detection especially supports the goal of explanation–aware data mining [54] –
in line with interpretable and explainable data mining [4, 73] due to its more interpretable results, e. g., for char-
acterizing a set of data, for concept description, for providing regularities and associations between elements in
general, and for detecting and characterizing unexpected situations, e. g., events or episodes.

Data warehouses frequently use declarative query languages. From knowledge–based information systems,
the query languages SQL, XQuery, DATALOG, and SPARQL are well–known: the knowledge engineer does not
have to program the instructions for evaluating a query, she/he just specifies the knowledge in an abstract and
compact syntax. For the logic programming language PROLOG [16, 22] Bob Kowalski has created the slogan
”Algorithm = Logic (what) + Control (how)”. Data warehouses use online analytical processing (OLAP) based on
aggregation queries in SQL for computer scientists and graphical user interfaces for domain experts (data cube,
spreadsheet), if the user knows which patterns to search for.
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3 Method

The declarative toolkit Declare can be used as a mediator to combine meta–learning with declarative orchestration
to put all the building blocks together in a flexible declarative way. Between different applications of data mining
methods, the basic data can be transformed with Declare, and based on a declarative analysis of the results of
previous applications of data mining methods, further data mining methods can be applied (orchestration).

3.1 Meta–Learning and Declarative Knowledge Discovery

In machine learning, the concept of meta–learning [17, 43] has been established, e. g., in the area of ensemble
learning when improving weak learners. Essentially, boosting [30, 31] and bagging [18] focus on the data char-
acteristics together with some evaluation measure of a classifier, for improving the classifier by modifying the
originating dataset. In addition, the selection of a data mining method, e. g., for classification, association rule
mining etc. can also be implemented using meta–learning [14, 71], as well as for formalizing, evaluating and
refining a data mining task [7, 12].

In our approach, we extend the concept of meta–learning beyond those proposed in the literature. We extend
on those and make use of the full declarative capabilities, e. g., for modfying the data characteristics for data
mining and machine learning, for optimizing a given method such as changing a set of input parameters, and by
including other important criteria such as interpretability, coverage, redundancy of the given patterns/models etc.

3.2 The Declarative Mediator Declare

The declarative logic programming toolkit Declare [66] is an open–source library developed in SWI PROLOG [75]
containing a deductive database system DDBASE that can access hybrid databases (relational: SQL, ODBC; XML:
XQuery; semantic web; . . . ) to produce complex structured answers using a query language DATALOG∗ for the
stratified evaluation of logic programs with embedded PROLOG calls. DDBASE combines PROLOG and DATA-
LOG∗. It can process hybrid knowledge bases containing relational databases (RDB) and XML documents within
the same query using SQL (ODBC) and FNQuery, respectively, see Figure 2. This extends database programming
languages (DBPL) by XML capabilities.

Declarative Programming: Prolog, …

SQL DATALOG XQUERY

Fig. 2. Declarative Programming for Hybrid Knowledge Bases in DDBASE

Declare has been developed at the Universities of Tübingen and Würzburg; it is availabe publicly and can
be installated in a docker container on most common platforms (including Windows, macOS, and Linux). Do-
main specialists can load data into a hybrid internal data warehouse (e.g. in relational or XML format) and then
analyse the data using explainable techniques [46] from artificial intelligence (declararative and online–analytical
programming and data mining tools). Declarative logic programming in Declare (DDBASE, DATALOG∗, and
FNQuery) can be used as a mediator tool for managing and connecting hybrid database knowledge.
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3.3 Subgroup Discovery with Vikamine

The open–source tool Vikamine3 [6,8] for subgroup discovery and pattern mining is used in data science, artificial
intelligence and complex network analysis. Vikamine is an open environment for intelligent pattern mining and
subgroup discovery, which features a variety of state–of–the–art automatic algorithms, visualizations, high exten-
sibility and customization capabilities. It is implemented in Java, but provides various interface solutions, e. g.,
in an R–implementation4; alternatively, it can also be configured and orchestrated via an XML–based interface.
Thus, with the latter, Vikamine can be flexibly embedded into data analytics workflows, e. g., in meta–learning
and orchestration contexts. This is also the targeted approach in the context of the Declare toolkit.

Vikamine focuses on pattern mining for identifying local exceptional patterns via subgroup discovery; it also
supports the variant of exceptional model mining, providing this on complex relational data as well. In this way,
Vikamine aims at providing interesting patterns that help to ”make sense” of complex information and knowledge
processes. At its core, Vikamine applies subgroup discovery, which aims at identifying subgroups of data instances
that are interesting with respect to a a specific quality function. A subgroup can be represented by a pattern typi-
cally consisting of feature–value pairs, as discussed above. In this way, subgroup discovery provides explicit and
interpretable patterns, as an instance of interpretable machine learning, e. g., [4, 47]. Therefore, this features both
interpretability as well as explainability, e. g., [4]. Exemplary applications include e. g., the medical domain [63]
as well as industrial applications [70], and the analysis on social interactions and human behavior [21, 33, 37].

Vikamine, i. e., its core library provides an XML–based interface such that subgroup discovery tasks can
be configured using declarative XML specifications for orchestrating Vikamine to be used in larger processing
pipelines, e. g., connected to the toolkit Declare.

4 Example Case: Knowledge Discovery in Tennis Data with Declare

Fig. 3. Tennis Court with Suit-
able Tiling Computed Using
Domain Knowledge

For a tennis data warehouse, we have used Declare and the public data mining
software tools Weka and Vikamine in an extensive case study for analysing XML
data representing tennis rallies. The framework / method proposed in the previous
section can be used for knowledge discovery in general, e. g., in projects with re-
lational or XML databases. In the case of the tennis example, tennis trainers could
first digitize videos using our tool based on concepts from neural networks and
deep learning utilizing OpenCV [15, 74]; then, trainers can analyse and improve
the tactical behaviour of their students using declarative data mining concepts.
For practical usage, of course, the needs of the users would be to have a stable
system running on a common platform such as a Windows PC – or even a smart-
phone; also, declarative explanations and visualizations of the obtained results are
essential. Our current focus is to provide Declare and the Tennis tool in a docker
container, as a flexible solution that can be used under different operating systems.

With a graphical user interface, tennis matches are managed and linked with
corresponding video sequences. A tactical analysis should reveal promising strate-
gies: The rallies are linked to video sequenes, which we transform to the data
format XML using AI techniques (deep learning). Declare has been used for de-
composing the tennis court into tiles, such that the likelihood that a ball hits a
tile becomes positive, whereas it is almost unlikely that the previous numerical
values occur more than once, cf. Figure 3. Suitable tilings could be found semi–
atomatically by domain experts using the domain knowledge. In a case study, we
have analyzed how often a player hit from tile (i,j) to (k,l) using a spread-
sheet, cf. Figure 4. The coordinates x=0/4 and y=0/3 represent the outfield. The
sum of a row (i,j) shows how often a player hit from that tile, and the sum of a
column (k,l) shows how often it was hit to that tile.

Declare has also been used for orchestrating different data mining methods of Weka and Vikamine. Based on
the results of previous association rule minings, other – more or or less refined – tilings of the tennis court have
been computed with FNQuery.

3 http://www.vikamine.org
4 https://rsubgroup.org)
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4.1 OLAP Queries

After selecting and transforming the data using the mediator Declare to derive a suitable spreadsheet, simple
OLAP queries could be asked. The spreadsheet of Figure 4 was derived from the tiling, that had been computed
using domain knowledge from tennis experts.

 (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) (4,0) (4,1) (4,2) (4,3)

(0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0,3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,1) 0 0 0 0 0 0 12 0 0 0 8 0 0 0 19 0 0 0 0 0 39

(1,2) 1 3 0 0 5 1 3 0 2 8 4 0 1 7 1 0 0 6 0 0 42

(1,3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 19 0 0 0 31 0 0 0 28 0 0 0 0 0 78

(2,1) 0 0 0 0 0 0 15 0 0 0 23 0 0 0 19 0 0 0 0 0 57

(2,2) 1 4 0 0 2 11 0 0 6 20 9 0 2 10 0 0 0 3 0 0 68

(2,3) 0 1 0 0 0 9 1 0 0 24 2 0 0 10 0 0 0 1 0 0 48

(3,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3,1) 0 0 0 0 0 0 10 0 0 0 10 0 0 0 8 0 0 0 0 0 28

(3,2) 2 6 0 0 4 18 0 0 3 16 3 0 5 3 4 0 0 2 0 0 66

(3,3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 4 14 0 0 11 39 60 0 11 68 90 0 8 30 79 0 0 12 0 0 426

Fig. 4. A Suitable Spreadsheet for OLAP Queries

To the best of the authors’ knowledge, such a spreadsheet analysis for supporting (OLAP) queries in the
context of declarative data mining, with adaptations via meta–learning is new. Here, we are currently investigating
clustering methods on the speadsheets of different matches, e. g., for finding pairs of players with similar matches.

4.2 Mining Association Rules

In [74], we have computed association rules with conjunctive conditions x1=i, y1=j and conjunctive conse-
quences x2=k, y2=l. With Declare, it was possible to specify subsumption rules [68] between the association
rules to select a small intuitive subset from the very large set of produced patterns (i.e. association rules), that can
be presented as knowledge to the tennis expert.

Best rules found:
1. x1=2, y1=0 61 ==> x2=4, y2=2 44 conf:(0.72)
2. x1=3, y1=0 64 ==> x2=2, y2=2 38 conf:(0.59)
11. x1=3, y1=0 64 ==> x2=1, y2=2 25 conf:(0.39)

3. x1=2, y1=3 76 ==> x2=3, y2=1 38 conf:(0.50)
5. x1=2, y1=3 76 ==> x2=4, y2=1 35 conf:(0.46)
4. x1=3, y1=3 75 ==> x2=2, y2=1 36 conf:(0.48)
6. x1=3, y1=3 75 ==> x2=1, y2=1 34 conf:(0.45)

14. x1=1, y1=1 106 ==> x2=4, y2=2 37 conf:(0.35)
28. x1=1, y1=1 106 ==> x2=1, y2=2 20 conf:(0.19)
18. x1=2, y1=1 65 ==> x2=4, y2=2 20 conf:(0.31)
...

These interesting association rules have been selected with Declare from a very large number of rules returned
by Weka using subsumption rules specified in Declare. The rules 1, 2, and 11 are talking about services from the
bottom field, since y1=0 . The rules 3, 5, 4, and 6 are talking about services hits from the top field, since y1=3 .
Finally, the rules 14, 28, and 18 are talking about ground hits from the bottom field, since y1=1 .
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4.3 Knowledge Representation and Reasoning

The Tennis Tool represents tennis matches in a data warehouse in XML format. There exists a toolkit FNQuery [67]
with a graphical user interface (GUI) to process XML data, see Figure 5. After loading an XML document in the
left window, we can ask queries with the finger icon or transform the data with the two pages icon. In Figure 5, a
query is asked in the left window, and the result is given in the little picture below.

Fig. 5. GUI of FNQuery

Powerful queries with path expressions – similar to XPath – including user–defined aggregation are possible
in FNQuery. In the following, we will show two examples which have not been published before.

Example: Length of a Rally. The average length (number of hits and length of the way of the ball) is aggregated
by sets (S) and games (G). The serving player (P) is also returned.

average_point_distances(Match, Set, Tuples) :-
ddbase_aggregate( [S, G, P, avg(L), avg(D)],

( Point := Match/set::[@id=S]/
game::[@id=G, @service=Service]/point,

P := Match/player::[@id=Service]@name,
point_to_length_and_distance(Point, L, D) ),

Tuples ).

For the first set, the respective statistics with the returned tuples are shown in a table in XPCE, see Figure 6.
When Sampras serves, then the rallies are much shorter. As a serve–and–volley player, he runs to the net early to
finish the point:
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Fig. 6. Statistics for the Games of the First Set: Average Number of Hits and Average Point Distances

Example: Cross–Cross–Longline Rally. We are especially interested in rallies where two cross balls are played
before a longline (ccl ).

tennis_point_classify(ccl, File, Point) :-
Point := doc(File)/descendant::point,
point_to_successive_values(x, Point, [X1, X2, X3, X4]),
Limit = 1,
( X1 >= Limit, X2 =< -Limit, X3 >= Limit, X4 >= Limit
; X1 =< -Limit, X2 >= Limit, X3 =< -Limit, X4 =< -Limit ).

point_to_successive_values(Attribute, Point, Values) :-
Hits_1 := Point/content::’*’,
n_successive_elements(4, Hits_1, Hits_2),
( foreach(H, Hits_2), foreach(V, Values) do

A := H@Attribute ).

The longline starts the decision phase: often, the other player cannot reach the ball, since the longline is
unexpected and the way to the other side of the court is long; otherwise, if he reaches the ball, then he has a good
chance to win the point himself.

The following Declare query shows the cross–cross–longline rallies and waits for a user input between dis-
playing rallies. Every single rally is visualized in the graphical user interface, see Figure 7, and the corresponding
video sequence can be played.

?- Type = ccl, File = ’2002_sampras_agassi_final.xml’,
forall( tennis_point_classify(Type, File, Point),

( tennis_point_xml_display(Point), wait ) ).

4.4 Subgroup Discovery with Vikamine

We have applied subgroup discovery using the Vikamine algorithmic kernel component via its XML interface. For
this, we applied the tennis dataset which was accordingly preprocessed using Declare, on the level of points, and
points and hits – for a more detailed analysis if not only the attributes that contribute to a point are included for
analysis, but also individual hits by the respective players can be analyzed. Using this, we have defined several
subgroup discovery tasks, specifying different target concepts.



Declarative Knowledge Discovery in Databases via Meta–Learning – Towards Advanced Analytics 9

Fig. 7. A Cross–Cross–
Longline Rally

In our application case, i. e., for tennis data analysis, we can make use of the
rich modeling capabilities of the Vikamine kernel component, including extended
quality functions which make use of the concepts of subgroup discovery as well as
exceptional model mining. We can, for example, focus on patterns that a specific
player is the winner of a point. For this simple example, we just need to specify
the respective target variable. We implement this by selecting a binary target tA =
(winner = A) or tB = (winner = B) for the respective players A (Sampras) and
B (Agassi), respectively.
Then, we can detect subgroups as follows:

Target tA (Sampras wins):
– Sampras wins in 85% of all cases, if he serves, there are no errors, and

Agassi has a score of 0.
– Another interesting pattern is given by Sampras = top and service = Sam-

pras with a share of winning the point of 72%.

Target tB (Agassi wins):
– If Sampras makes an error, then Agassi wins with 100%.
– Also, for example, if set = 2 and error = 0 and service = Agassi, then

Agassi wins with 79%.

Furthermore, such analysis can then also be implemented for numeric target vari-
ables; in addition, they can be extended towards more complex modeling structures
such as a graph – something where subgroup discovery in particular benefits from
its flexibly definable quality function, in contrast to e. g., association rule mining.

5 Conclusions

In general, data mining systems are applied to obtain a set of novel, potentially useful, and ultimately interesting
patterns from (large) data sets [27]. While the resulting patterns are typically interpretable, e. g., in pattern mining,
the large result sets of potentially interesting patterns that the user needs to assess, require further exploration
and interpretation techniques. Here, specifically declarative approaches, meta–learning and orchestration provide
suitable options for the implementation of such approaches, essentially supporting computational sensemaking in
order to “make sense” in the context of complex information and knowledge processes [4].

In the context of this paper, we focused on a specific application case – given by tennis data mining. Here,
in a human-centered knowledge discovery approach, trainers can analyse and potentially improve the tactical be-
haviour of their students using declarative data mining concepts, as outlined in this paper. So far, the orchestration
of the methods from knowledge discovery in tennis data warehouses has been done semi–automatically, in partic-
ular making use of and based on the transformation capabilities of the mediator toolkit Declare. We are currently
working on an extended orchestration prototype for the data mining and knowledge discovery workflow, in order
to enable further declarative approaches supported by an integrated architecture.

Furthermore, in [74], we had performed an initial case study for tennis data, where association rule mining was
applied for a single tennis match and different tilings of a tennis court. In the future, it will be interesting to built
a large data warehouse containing tennis matches of many players over several seasons and to orchestrate various
methods for data mining. Then we can compare the strategies of different players versus different opponents. In
general, we would like to incorporate the usage of declarative domain knowledge in the orchestration process.

In the future, we also aim analyze the technique of the different types of hits (forehand, backhand, volley) of
the players using more sophisticated video analysis.
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42. Nada Lavrač and Anže Vavpetič. Relational and semantic data mining. In International Conference on Logic Program-
ming and Nonmonotonic Reasoning, pages 20–31. Springer, 2015.

43. Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends and technologies. Artificial
intelligence review, 44(1):117–130, 2015.

44. Florian Lemmerich, Martin Atzmueller, and Frank Puppe. Fast Exhaustive Subgroup Discovery with Numerical Target
Concepts. Data Mining and Knowledge Discovery, 30(3):711–762, 2016.

45. Bing Liu and Wynne Hsu. Post–Analysis of Learned Rules. In Proc. 13th National Conference on Artificial Intelligence
(AAAI-96), pages 828–834, Menlo Park, CA, 1996. AAAI Press.

46. Luca Longo, Randy Goebel, Freddy Lecue, Peter Kieseberg, and Andreas Holzinger. Explainable Artificial Intelligence:
Concepts, Applications, Research Challenges and Visions. In Andreas Holzinger, Peter Kieseberg, A. Min Tjoa, and
Edgar Weippl, editors, Machine Learning and Knowledge Extraction, volume 12279 of LNCS, pages 1–16. Springer,
Cham, 2020.

47. Corentin Lonjarret, Céline Robardet, Marc Plantevit, Roch Auburtin, and Martin Atzmueller. Why Should I Trust This
Item? Explaining the Recommendations of any Model. In Proc. IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 526–535. IEEE, 2020.

48. Bing Liu Wynne Hsu Yiming Ma, Bing Liu, and Yiming Hsu. Integrating classification and association rule mining. In
Proceedings of the fourth International Conference on Knowledge Discovery and Data Mining (KDD 1998), pages 80–86,
1998.

49. James MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297. Oakland, CA, USA,
1967.

50. Heikki Mannila. Theoretical Frameworks for Data Mining. SIGKDD Explor., 1(2):30–32, 2000.
51. Gonzalo Mariscal, Oscar Marban, and Covadonga Fernandez. A survey of data mining and knowledge discovery process

models and methodologies. The Knowledge Engineering Review, 25(2):137, 2010.
52. Martin Atzmueller and Frank Puppe and Hans–Peter Buscher. Exploiting Background Knowledge for Knowledge–

Intensive Subgroup Discovery. In Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pages
647–652, Edinburgh, Scotland, 2005.



12 Dietmar Seipel and Martin Atzmüller

53. Martin Atzmueller and Frank Puppe and Hans–Peter Buscher. A Semi-Automatic Approach for Confounding–Aware
Subgroup Discovery. International Journal on Artificial Intelligence Tools (IJAIT), 18(1):1 – 18, 2009.

54. Martin Atzmueller and Thomas Roth–Berghofer. The Mining and Analysis Continuum of Explaining Uncovered. In
Proc. 30th SGAI International Conference on Artificial Intelligence, 2010.

55. Osman Mian, Alexander Marx, and Jilles Vreeken. Discovering Fully Oriented Causal Networks. In Proc. AAAI Confer-
ence on Artificial Intelligence (AAAI). AAAI, 2021.

56. Taneli Mielikäinen. Finding all Occurring Sets of Interest. In Jean–Francois Boulicaut and Saso Dzeroski, editor, Proc.
2nd International Workshop on Knowledge Discovery in Inductive Databases., pages 97–106, 2003.

57. Dennis Mollenhauer and Martin Atzmueller. Sequential exceptional pattern discovery using pattern-growth: An extensible
framework for interpretable machine learning on sequential data. In Martin Atzmüller, Tomás Kliegr, and Ute Schmid,
editors, Proceedings of the First International Workshop on Explainable and Interpretable Machine Learning (XI-ML
2020) co-located with the 43rd German Conference on Artificial Intelligence (KI 2020), Bamberg, Germany, September
21, 2020 (Virtual Workshop), volume 2796 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

58. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering Frequent Closed Itemsets for Association
Rules. In Catriel Beeri and Peter Buneman, editors, Proc. 7th International Conference on Database Theory (ICDT 99),
volume 1540 of Lecture Notes in Computer Science, pages 398–416. Springer, 1999.

59. Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. In ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 21–30, 2000.
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